Postvertriebsstück Gebühr bezahlt Hüthig und Pflaum Verlag, 69 Heidelberg 1, Postf. 102869 B 3109 EX

Dezember 1979 34. Jahrgang ISSN 0016-2825

FURK

TECHNIK

Fachzeitschrift für die gesamte Unterhaltungselektronik

KATHREIN MODESA

Qualifikation wird sichtbar

- mit gestrecktem Dipol, optimiert für jeden Kanal
- ☐ mit Praktiker-Anschlußgehäuse
- ☐ Elemente aus Vollmaterial, mechanisch und funktionell optimierter Querschnitt – neue Stabil-Halterungen

mehr Leistung

B III-Kanalantennen
für jeden
Kanal

- selektiv, störfest gegen Fremdsignale
- mit überragender Rückdämpfung
- mit einem Gewinn von 11,5 bzw. 13 dB für Monoka 110 bzw. 130.

KATHREIN-Monoka – B III-Kanalantennen. Die neue Perspektive. Für alle Empfangsanlagen, auch für schwierigste! Von Profis für Profis gemacht.

Qualität macht ihren Weg

KATHREIN

Antennen · Electronic · Communications-Anlagen

Postfach 260 8200 Rosenheim 2 Telefon 08031/184-1

Inhalt

Werkstatt und Service

Warenkunde

Schallplatten:

So bleibt der Hörgenuß erhalten T 575

Rundfunkempfänger:

Bausteine für die elektronische

Programmwahl T 582

Hobby-Werkstatt

Anregung zum Nachbau:

Meßbrücke zum Ermitteln des Stromverstärkungsfaktors

T 590

Forschung und Entwicklung

Forschung und Lehre

Forschungsbericht:

Die Zuverlässigkeit von Farbfernsehgeräten – ein Vergleich der Geräte verschiedener

Hersteller

Professionelle Technik

Computer:

Wo "künstliche" Intelligenz den Menschen übertreffen kann

T 606

T 594

Technologie

Speichertechnik:

Magnetblasen der zweiten Art

T 608

Berichte über neue Entwicklungen

Bekanntgemachte Patentanmeldungen T 610

Ausbau des Fachwissens

FT-Lehrgang für

(Bild: Orschler)

Radio- und Fernsehtechniker:

Einführung in die Digitaltechnik, 11. Folge

T 616

A1

Die bewegliche Mittelraum-Möblierung in dem Hi-Fi-

Studio des umgebauten Facheinzelhandelsgeschäftes Elektro Matheus in Neumagen-Dhron wurde so geplant, daß Warenschwerpunkte geschaffen und leicht verändert

werden können. Die Ausstattung stammt aus dem

"Chrom-magic"-Programm der Ladenbaufirma Orschler in Stockstadt, der die Gestaltung des Fachgeschäftes

Titelbild

übertragen worden war.

Wir von Bosch bauen die Fernseh-Kameras. Wir von Blaupunkt die Fernseher. Damit Ihre Kunden Farbfernsehen "live" aus einer Hand haben.

Daß die Fernsehanstalten mit Bildmischpulten und MAZ-Anlagen von Bosch arbeiten, wissen Ihre Kunden nicht. Aber Bosch Kameras und Blaupunkt Monitore können sie in vielen Sendungen sehen. Gibt es eine bessere Empfehlung für Blaupunkt Farbfernsehen "live" zu Hause? Mit neuem Bild.

Der neue Columbia IB 39 S Color z. B. hat die neue, noch schärfere 67-cm-Farbbildröhre PI-S 4, die selbst feine Ziffern und Buchstaben gestochen scharf bringt. Dazu ein neuer glatter Bildrand, der den

sauberen, klaren Charakter des Bildes unterstützt. Keine Einstreuung vom Gerät auf in der Nähe stehende Video-Recorder. Der reduzierte Stromverbrauch sorgt durch "kühlere Technik" für längere Lebensdauer: Der Columbia IB 39 S Color braucht nur noch 90 Watt nach dem Europa-Norm-Entwurf (109 Watt nach DIN). Mit neuem Ton.

Damit zum hautnahen Bild auch der lebensechte Ton kommt, haben wir den Columbia IB 39 S Color mit einem ganz neuen Klang-System ausgerüstet: QuasiParallelton mit gestopfter 50-Watt-Box und 2-Wege-Aktivschaltung. Getrennte Klangregler für Höhen und Bässe gestatten eine differenzierte Abstimmung. Ganz nach persönlichem Geschmack. Eine" live"-Vorführung in Ihrem Geschäft wird Ihre Kunden überzeugen.

Schallplatten

So bleibt der Hörgenuß erhalten

Ing. Gerd Tollmien, Hamburg

Dem Schallplatten-Fan steht zur Pflege der schwarzen Scheiben ein umfangreiches Programm an Reinigungsbürstchen, Tüchlein, Antistaticwässerchen und dergleichen zur Verfügung. Alles in einem Raum gestapelt - und der Unterschied zu den mannigfaltigen Accessoires eines Damensalons wäre nicht sehr groß. Der Autor hat einige charakteristische Vertreter der verschiedenen Pflege-Philosophien zusammengestellt und beschreibt deren Wirkungsweise. Darüber hinaus gibt er noch Tips für den Umgang mit Platte und Plattenspieler.

Die Schallplatte ist, abgesehen von ihrem kurzlebigen Vorläufer – Edisons Walze, der erste Tonträger überhaupt und hat ihre beherrschende Stellung bis heute behauptet; auch gegen die ständig wachsende Konkurrenz des Tonbandes.

Wenn Staubkörnchen zu Felsbrocken werden

Die nachfolgend genannten Daten gelten für Langspielplatten. Hier hat die Rille eine Länge von knapp 1 km, und mit einer Breite von 50 μ m bis 70 μ m ist sie schmaler als ein menschliches Haar, so daß auf einen Millimeter Plattenbreite bis zu 10 Rillen nebeneinander unterzubringen sind. Im Mittel nehmen die Rille und der Steg zwischen den Rillen etwa 100 μ m Breite in Anspruch.

Ing. Gerd Tollmien hat die produktionstechnische Leitung der NDR-Fernsehstudios in Hamburg-Wandsbek. Bei den äußeren Rillen beträgt die Abtastgeschwindigkeit etwa 52 cm/s. Das heißt, daß ein aufgezeichnetes 10-kHz-Tonsignal nur eine Wellenlänge von etwa 50 µm hat. Am Plattenende, nahe der Mitte, ist die Abtastgeschwindigkeit auf 21 cm/s zurückgegangen und die Wellenlänge eines 10-kHz-Tones nur noch etwa 20 μm. Selbst bei so winzigen Wegstrecken werden Nadelauslenkungen von 1 μm noch gut hörbar gemacht. Bei hochwertigen Anlagen sollten sogar Auslenkungen von nur 0.1 um ein brauchbares elektrisches Signal liefern. Die Nadelauslenkung ist dann jedoch wesentlich kleiner als die meisten Verunreinigungen in der Rille, so daß selbst Staubkörnchen die Nadel aus der Bahn werfenkönnen.

So steht der Plattenspieler gut

Steht ein Plattenspieler nicht waagerecht, dann ist der Druck der Abtastnadel gegen die tiefer liegende Rillenflanke stärker, als gegen die höher liegende. Das bedeutet nicht nur ein ungleichmäßiges Abnutzen von Platten und Tonabnehmernadel, sondern auch ein Verfälschen der Wiedergabe - vor allem bei Stereoplatten. Hier sind die Toninformationen der beiden Kanäle auf je einer Rillenflanke untergebracht. Drückt die Abtastnadel stärker gegen eine Flanke, so wird dieser Kanal auch stärker abgetastet. Dann kann die Nadel jedoch leicht aus der Rille springen und dabei die Plattenoberfläche beschädigen; diese Kratzer bleiben für immer. Der Plattenteller sollte deshalb mit einer Dosenlibelle waagerecht ausgerichtet werden.

Bei falsch aufgestellten Plattenspielern kann es zu störenden akustischen Rückkopplungen kommen, wenn die Schallschwingungen eines Lautsprechers vom Tonabnehmer aufgenommen werden. Deshalb ist die Aufstellung in unmittelbarer Nähe des Lautsprechers ungünstig. Gefahr droht auch von Körperschall, der beispielsweise durch Schritte auf dem Fußboden erzeugt wird und sich bei unsachgemäßer Aufstellung des Plattenspielers bis zum Tonabnehmersystem ausbreiten kann. Ein stabiles Untergestell beugt hiervor.

Schallplatten nehmen Hochstapelei übel

Bei Schallplatten, die zu großen Stapeln aufeinanderliegen, können die Rillen der unteren Platten durch zu hohen Druck beschädigt werden. Falsch ist es auch, Platten schräg stehend zu lagern, weil sie sich so verformen. Das gilt vor allem, wenn bei einer großen Zahl von Platten ein zusätzlicher seitlicher Druck ausgeübt wird.

Der "Rolling Cleaner" rückt dem Staub mit einer Klebeschicht zu Leibe (Osawa & Co. GmbH)

Verformungen der Platten können auch unter dem Einfluß von Wärme entstehen, wenn die Platten längere Zeit der Sonne ausgesetzt sind, in der Nähe der Heizung oder auf einem warmen Verstärkergehäuse liegen. Die nur etwa einen Millimeter dünnen Kunststoffplatten sind sehr empfindlich gegen Erwärmung. Schon ein geringes Verziehen der Platte kann wegen der Dehnung der Tonspur Schwankungen der Abtastung hervorrufen, die als Jaulen hörbarwerden.

Um derartige Plattenschäden zu vermeiden, sollten die Schallplatten in schmalen Fächern möglichst staubfrei aufbewahrt werden, und zwar immer nur in ihren Schutzhüllen! Dabei sollten sie senkrecht stehen. Eventuell ist das Fach mit anderen Dingen aufzufüllen, wenn nicht genug Platten vorhanden sind. Wenige Schallplatten, nach Auskunft eines Münchner Fachgeschäfts maximal 10 Stück, darf man auch aufeinander legen.

Deckel zu und Finger weg

Der Staub ist nach wie vor der größte Feind der Schallplatten und das durch ihn hervorgerufene Knistern höchst unangenehm. Er gelangt hauptsächlich durch elektrostatische Aufladung auf die Platte, die buchstäblich zum Staubfänger wird. Leider ist es bis heute noch nicht gelungen, elektrisch neutrale Plattenmaterialien herzustellen. Grundsätzlich sollte der Schutzdeckel des Plattenspielers deshalb nur geöffnet werden, um eine Platte aufzulegen oder zu wechseln, sonst aber geschlossen bleiben. Auch soll die Platte nur für die Zeit des Abspielens aus der Schutzhülle herausgenommen werden. Und vor allem: Nicht mit den bloßen Fingern die Rillen der Platte berühren! Sonst bleiben feuchte, fettige Rückstände in der Rille, die Staubteilchen binden und einen Schmutzbreibilden.

Was Papierhüllen alles anrichten können

Die Aufladung der Schallplatte mit statischer Elektrizität erfolgt in trokkenen Räumen schon bei der geringsten Reibung, zum Beispiel wenn die Platte aus einer Papierhülle herausgezogen wird.

Von der Firma W.S.B.-Electronic, Worpswede, kommt der Hinweis auf eine weiche und elektrisch leitende Kunststoff-Folie, die sich gut für Schutzhüllen eignen würde und eine Reihe von Problemen, vor allem das der statischen Aufladung, beseitigen könnte. Es ist überhaupt Zeit, daß sich die Plattenhersteller mehr um die Beschaffenheit der Schutzhüllen kümmern. Das harte Papier vieler Hüllen ist nicht gut für die Plattenrillen. Neben feinen Kratzern wird beim Herausziehen der Platte Papierstaub erzeugt, der sich in die Rillen setzt.

Hilfsmittel gegen Staub und Aufladung

Man findet immer wieder Antistatiktücher und -sprays angeboten, vor deren Gebrauch jedoch gewarnt wird. Einmal können sich im Tuch kleine harte Staubteilchen befinden, die Plattenoberfläche zerkratzen, zum anderen hinterlassen die Sprays oft andauernde Feuchtigkeit in den Rillen, die sich mit Staubteilchen verbindet und dann als schmirgelnder Brei beim Abspielen ihr Unwesen treibt. Der Schmutzbrei kann sich zudem noch verhärten, so daß die Abtastnadel den feinen Auslenkungen nicht mehrfolgt. Wichtig ist, daß der Raum, in dem sich die Platten befinden, nicht zu trocken ist. Notfalls ist durch einen Wasserverdunster dafür zu sorgen, daß die Luftfeuchtigkeit groß genug ist, denn trokkene Luft erleichtert die statische Aufladung sehr.

Die Industrie bietet ein ganzes Arsenal von Reinigungsmitteln an, die auch die statische Aufladung beseitigen oder verhindern sollen. Um leichten Staub von der Platte zu enfernen, genügt es aber oftmals schon, sie unmittelbar vor dem Abspielen mit einem weichen fusselfreien Tuch, das ganz leicht angefeuchtet wird, abzuwischen. Durch die Feuchtigkeit wird der Staub gebunden und eine statische Aufladung neutralisiert.

Plattenbürsten und Plüschwalzen

Von der Firma Decca (Vertrieb: audio team GmbH, Asendorf) wird die Plattenbürste "Recordbrush" angeboten. Sie fegt mit 1 Million feinster Borsten den Staub von der Platte. Die Borsten sind leitend, so daß auch statische Aufladungen beseitigt werden.

"Parastat 11 A" und "Hi-Fi-Parastat MK 4" heißen Plattenbürsten des englischen Herstellers C. E. Watts. Der Parastat 11 A ist die Kombination einer Bürste mit langen feinen Nylonborsten und zweier Plüschkissen, die beiderseits der Bürste angeordnet sind. Damit wird die sich drehende Platte un-

ter leichtem Druck gereinigt. Mit etwas Antistaticum auf den Plüschkissen ist auch die statische Aufladung abzuleiten. Der Hi-Fi-Parastat MK 4 wurde für die Pflege neuer unbeschädigter Platten geschaffen. Er enthält eine Nylonbürste mit besonders feinen und eng stehenden Borsten.

Bewährt hat sich auch der "Preener" von C. E. Watts. Das ist eine Plüschwalze mit einem wassergetränkten Docht im Inneren, der das Wasser langsam an die Plüschhärchen abgibt. Bei der Plattenreinigung wird der Preener vorsichtig über die sich drehende Schallplatte bewegt. Dabei hebt die Walze den Staub aus den Rillen und leitet durch die Feuchtigkeit die Aufladung ab.

Von der Canton Elektronik GmbH+Co., Usingen, wird die Carbonfiber-Bürste "Cantosweep" angeboten. Die Schutzkappe dient als Griff und nimmt auch das Reinigungsstäbchen auf, mit dem die Bürste gesäubert wird. Statische Aufladungen werden abgeleitet.

Kleberoller und Klebefilm

Wirksamer als jede übliche Plattenbürste soll der "Rolling Cleaner" der Firma Nagaoka sein (Vertrieb: Osawa & Co., München). Durch die Haftwirkung eines speziellen Kunststoffes holt er den Staub auch vom Grund der Rillen. Läßt die Haftwirkung nach, ist der "Rolling Cleaner" über Jahre hinweg durch Abwaschen mit Leitungswasser wieder gebrauchstüchtig zu machen. Eine antistatische Wirkung geht von ihm allerdings nicht aus.

Ähnlich ist die Wirkungsweise der Reinigungsrolle DC 600, die im Vertrieb der Tensai Electronic GmbH, Hamburg, zu haben ist. Nur wird der Staub hier zuerst von einer Bürste aufgewirbelt, bevor ihn die Kleberolle "packt". Das Säubern geschieht wie beim "Rolling Cleaner".

Ungewöhnlich ist die Wirkungsweise des Platten-Reinigungsmittels "Discofilm". Hier wird aus einer Plastikflasche, die an der Öffnung einen Auftrageschwamm enthält, eine gallertartige Masse auf die Platte gebracht und leicht in die Rillen eingerieben. Nachdem die Reinigungsmasse in die feinsten Auslenkungen eingedrungen ist, wird die Platte zum Trocknen aufgestellt. Danach wird die Reinigungsmasse, die jetzt einen elastischen Film auf der Plattenoberfläche bildet, einfach abgezogen. Der Discofilm ist dann ein Negativ-Abdruck der Schallplatte und enthält alle Schmutzteile, die sich in

Renault 4 Transporter

Eine Idee hat sich durchgesetzt

Bis heute in Deutschland über 40.000 mal.

Das hat seine Gründe:

1. Sparsam wie der Renault 4

Schon bei der Anschaffung. Bescheiden im Verbrauch: Wittschaftlich im Einsatz, bei Steuem und Versicherung. Transporter 850: 7,0 1/100 km*. Natürlich Normalbenzin.

2. Erprobte Zuverlässigkeit

In Renault 4 millionenfach bewährte Technik: Robuste 25 kW (34 PSI-Motoren, Vorderradantrieb, Einzelradaufhängung, Zweikreisbremssystem mit Bleikreisbrehinderung durch Bremskraftregler.

3. Platz für »Alles«

Schon der Renault 4 Transporter 850 hat Platz für 1,8 Kubikmeter und für 350 kg Nutzlast. Und im Renault 4 Transporter 1100 bringt man bequem 2,35 Kubikmeter unter. Und 395 kg Nutzlast.

4. Problemlos in der Wartung


Die bewährten Motoren sind besonders wartungsfreundlich. Langlebige Korosserie durch Tauchlackierung, Hohlraumversiegelung und Unterbodenschutz. Renault 4 Transporter stehen auch als Gebrauchte hoch im Kurs.

RENAULT-LEASING-SYSTEM Nur für die Nutzung zahlen. Ohne Kopitalbindung, mit zusätzlicher Steuererspamis. Sofortfinanzierung durch die RENAULT CREDIT BANK

Wußten Sie, daß Renault in Deutschland das viertgrößte Kundendienst-Netz aller Automarken hat? Mit über 1.600 Kundendienststellen!

Renault empfiehlt elf Motorenöle.

Der "Discofilm" wird nach dem Trocknen abgezogen und nimmt alle Verunreinigungen der Platte mit (audio team GmbH)

den Rillen festgesetzt hatten. Die Wirkung des Mittels ist sehr gut. Der "Discofilm" wird vertrieben von der audio team gmbh, Asendorf.

Die Platte wird entladen

In letzter Zeit wollen einige Hersteller der statischen Aufladung der Schallplatte auf elektronischem Wege beikommen: Aus dem Polydor-Schallplatten-Pflegeprogramm wird dazu der "HiFi-Piezo-Stab 2000" angeboten. Er beseitigt (ohne Fremdstrom) die statische Aufladung der Platte. Nach der Behandlung mit dem Stab, die nur wenige Sekunden dauert, ist die Platte elektrisch neutral und hält keine Staubteilchen mehrfest.

Ähnlich funktioniert die "Entladepistole" Type "Zeepa Elisal" von VMP-Liethen, Haigerloch. Auch dieses Gerät beseitigt durch ein piezo-elektrisch erzeugtes Hochspannungsfeld die statische Aufladung der Plattenoberfläche. Auf ganz andere Weise beseitigt die "Canespa-Tronic-Plattentellerauflage" die statische Aufladung. Es handelt sich dabei um eine Matte aus leitendem Polyurethan-Schaum, die in Plattengröße an Stelle einer üblichen

Gummiplatte auf den Plattenteller gelegt wird und die Aufladung an das Plattenspielerchassis und damit zur Erde ableitet.

Die Platte wird entladen und außerdem gereinigt

Antistatisch wirkt der Plattenreiniger "Cleanetic" der Firma Sonetic-Tontechnik. Bei ihm werden außerdem die Staubteilchen hochgewirbelt und gleichzeitig aufgefangen. Sehr wirkungsvoll ist der Mitläufer "Decca-Record-Cleaner". An seiner Vorderseite ist eine Bürste mit über 20000 feinen elektrisch leitenden Härchen angebracht, und an der Halterung muß der Metallarm durch ein Kabel mit dem Plattenspielerchassis oder einer Erdleitung verbunden werden. Die Bürste nimmt, geführt von der Tonrille, den Staub auf und leitet gleichzeitig die Aufladung ab. Auf gleiche Weise arbeitet der "Discostat" von Canton, der mit einem Pinsel aus Carbonfiber die statische Aufladung über ein Kabel ableitet. Ein Mitläufer ist auch der "Dust Bug" von C.E. Watts. An einem Plexiglasarm befindet sich eine kleine Nylonbürste, die den Staub löst. Kurz dahinter ist eine Plüschwalze angebracht, die die Staubteilchen aufnimmt. Die Plüschwalze kann mit einem Antistaticum benetzt werden, um Aufladungen zu beseitigen.

Nach diesem Prinzip arbeiten auch die "Schallplattenbesen" TC 1 und TC 100 von der Tensai Electronic Vertriebs GmbH.

Ähnlich funktioniert noch der aus England kommende "Nion". Der Nion ist ein "Mitläufer", der wie der Tonarm beim Betrieb über die Platte geführt wird und dabei durch eine "lonenkeule" die Plattenoberfläche entlädt. Eine nachfolgende feinhaarige Walze hält die Staubteilchen fest.

Ein schon klassisches Reinigungsgerät ist der "Lencoclean", ebenfalls ein Mitläufer, mit dem die Schallplatte naß abgespielt wird. Er besteht aus einer dünnen Kunststoffröhre, die drehbar gelagert ist und neben dem Plattenteller montiert wird. Am Vorderende der Röhre befindet sich eine kleine Bürste. die von den Tonrillen der Platte geführt wird. In der Röhre selbst ist eine Flüssigkeit, die durch eine kleine Düse in die Bürste und damit auf die Schallplatte gelangt. Die Abtastnadel des Tonabnehmers tastet somit die Platte in einem Flüssigkeitsfilm ab. Staub- und Schmutzteilchen werden aufgelöst und von der Bürste festgehalten oder von der Nadel beiseite geschoben. Durch die Nässe wird auch eine statische Aufladung beseitigt.

Hierzu ist zu sagen, daß derartig abgespielte Platten möglichst immer nur naß abgespielt werden sollten. Nach dem Verdunsten der Flüssigkeit können nämlich Schmutzrückstände in der Rille bleiben, die immer wieder aufgelöst werden müssen.

Zum Naßabspielen von Schallplatten ist auch der Mitläufer "Hecoclean" der Heco Hennel + Co. GmbH, Schmitten, geeignet. Seine Flüssigkeit ist chemisch neutral, verdunstet schnell, und damit gepflegte Platten können zwischendurch sogar trocken abgespielt werden. Die Höheneinstellung an der Befestigungsachse erlaubt es, unterschiedliche Plattentellerhöhen auszugleichen.

Ein Bad schadet Schallplatten nicht

Stark verschmutzte Schallplatten kann man getrost richtig waschen. Dazu wird die Platte in lauwarmem Wasser, dem man einige Tropfen eines Netzmittels zugesetzt hat, vorsichtig geschwenkt, um den Schmutz zu lösen. Aber nicht bürsten! Bei der Wäsche ist darauf zu achten, daß die Plattenrillen nicht die Schalenwände oder den Rand berühren, sonst ist der Schaden größer als der Nutzen. Sitzt der Schmutz sehr fest, so kann mit einem feinen weichen Pinsel sehr vorsichtig nachgeholfen werden. Nach der Wäsche wird die saubere Platte mit klarem Wasser abgespült und zum Trocknen in ein sauberes fusselfreies Tuch eingeschlagen.

Wesentlich wirksamer ist eine Plattenwäsche, die unter der Bezeichnung "Recordocare" von der Firma W.S.B.-Electronic vertrieben wird. Damit ist eine gründliche Reinigung der Platte gewährleistet. Hierbei wird, nach dem Einweichen in lauwarmem Wasser, die Platte mit einem Spezial-Platten-Shampoo bearbeitet und der Schmutz aus den Rillen geholt. Nach einer Bearbeitungsdauer von etwa einer Minute je Plattenseite wird mit klarem Wasser nachgespült. Weil unser Leitungswasser Rückstände in den Rillen hinterlassen könnte, muß man die Platte noch mit einer speziellen Plattenspülflüssigkeit nachbehandeln und dabei alle Rückstände beseitigen. Wenn es auch eine etwas umständliche Art der Reinigung ist, so lohnt sie sich doch bei stark verschmutzten Schallplatten.

Auch Polydor brachte ein Reinigungsbad auf den Markt; es ist Bestandteil des "HiFi-Master-Set 800 L". Dabei wird die Platte in einem handwarmen Wasserbad gewaschen, dem eine spezielle Reinigungsflüssigkeit tropfenweise zugesetzt wird. Anschließend wird die Platte mit einem faserfreien Tuch abgetrocknet.

Reiniaunassets

Polydor hat ein Reinigungsprogramm herausgebracht, das verschiedene Einrichtungen enthält, darunter auch den "Samtwischer 200". Durch eine Samtwalze soll hier der Staub aus der Rille entfernt werden. Zwei Samtwalzen enthält der "Doppel-Samtwischer 400". Diesen gibt es auch für feuchten Einsatz, wobei ein feiner Feuchtigkeitsfilm die Rillen besser säubert, den Staub bindet und gleichzeitig eine statische Aufladung beseitigt.

Für die Spitzenklasse wurde von Polydor das "HiFi-Master-Set 800 L" konzipiert. Es enthält den oben genannten Doppel-Samtwischerfür Feucht-Technik, einen Nadel-Reiniger auf Feucht-Basis, ein Plattenbad, einen Plattengreifer, eine Tonarmwaage und eine "Puck-Waage", mit der man feststellen kann, ob der Plattenspieler

waagerecht steht. Weiterhin eine Stroboskopscheibe für 33 und 45 U/min.

Auch die Abtastnadel möchte gepflegt werden

Es lohnt sich, die Abtastnadel von Zeit zu Zeit einer Sichtprüfung mit einem starken Vergrößerungsglas zu unterziehen. Dabei erkennt man deutlich Verschmutzungen und Beschädigungen.

An der Nadel setzen sich mit Vorliebe zähe Schmutzablagerungen fest, die sie an der exakten Abtastung hindern. Die Wiedergabe wird verzerrt. Das Reinigen der Nadel kann dann mit einem kleinen Plüschkissen erfolgen, das bei hartnäckigem Schmutz mit Isopropyl-Alkohol benetzt werden darf. Dabei wird die Nadel in der Richtung, in der sie auch die Platte abtastet, vorsichtig abgewischt. Auch ein weicher Pinsel kann verwendet werden, keineswegs aber scharfe und harte Gegenstände. Im (W.S.B.-"Recordocare"-Programm Electronic, Worpswede) gibt es eine Spezialflüssigkeit für die Reinigung der Abtastnadel.

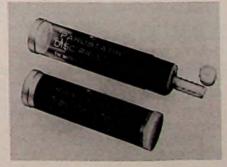
Auflagekraft: Nicht zu viel und zu wenig

Wichtig ist, daß vor allem die minimale Auflagekraft nicht unterschritten wird. Sie wird bestimmt von der an der Nadelspitze wirksamen Masse und der davon abhängigen Beschleunigung durch die Auslenkungen. Um den Kontakt zwischen Nadelspitze und den Rillenflanken zu gewährleisten, muß die Auflagekraft größer sein als die Beschleunigungskraft. Die immer noch verbreitete Annahme, daß durch eine niedrige Auflagekraft der Verschleiß von Platte und Abtastnadel geringer ist als bei höherer Auflagekraft, ist ein Irrtum.

Ist die Auflagekraft zu gering, so wird der Kontakt zwischen Nadelspitze und Rillenflanke gestört, die Nadel macht nicht mehr jede Auslenkung mit, und kann aus der Rille springen. Auf jeden Fall kommt es zu Verzerrungen, besonders bei hohen Tönen. Für die genaue Kontrolle der Auflagekraft gibt es Tonarmwaagen, zum Beispiel im Polydor-Programm.

Die anscheinend so geringe Auflagekraft von nur wenigen Millinewton (wenige Gramm) täuscht, denn bei den winzigen Berührungsflächen der Abtastnadel mit den Rillenflanken entstehen Drücke von mehreren tausend kg/cm². Das ist ein Vielfaches des Druckes, den ein Elefant mit seinen Füßen auf den Boden ausübt.

Horch, was kommt von draußen rein?


Das Rumpeln rührt vor allem von Unregelmäßigkeiten des Antriebssystems (Motor, Reibräder und Riementriebe) her und wird auf den Tonabnehmer übertragen. Es sind vor allem ungewollte Bewegungen, Erschütterungen, zwischen Platte und Tonabnehmer, die wie die Nadelbewegungen in der Rille eine Spannung erzeugen und sich im Lautsprecher ais tiefes Rumpeln bemerkbar machen. Um die Rumpel-Fremdspannung möglichst klein zu halten, werden Plattenteller und Tonarm auf einer Chassis-Einheit montiert, die gegenüber dem Motor und den anderen Teilen des Gerätes federnd aufgehängt ist. Dadurch erreicht man eine Körperschallisolation, vor allem gegenüber dem Antriebsmotor.

Moderne Plattenspieler der Spitzenklasse haben eine vernachlässigbar kleine Rumpel-Fremdspannung. Nach der Hi-Fi-Norm DIN 45500 ist ein Rumpel-Fremdspannungsabstand von 35 dB und ein Rumpel-Geräuschspannungsabstand von 55 dB zulässig. Gute Hi-Fi-Plattenspieler erreichen sogar einen Rumpel-Geräuschspannungsabstand von mehr als 70 dB.

Hier dreht's sich um die Drehzahl

Gleichlaufschwankungen sind kurzzeitige Änderungen der Drehzahl und vor allem auf Exentrizität und Unwucht der Antriebselemente zurückzuführen. Wenn auch die Gleichlaufschwankungen nicht völlig zu vermeiden sind, so müssen sie in bestimmten Grenzen gehalten werden, um die durch sie er-

Der "Preener" von C.E. Watts, England. Oben ist ein Stück des herausgezogenen Dochts zu erkennen

zeugten Störungen der Wiedergabe gering zu halten. Nach DIN 45500 müssen Gleichlaufschwankungen unter ±0,2% der Solldrehzahl liegen. Langsamere Schwankungen des Gleichlaufes machen sich im Lautsprecher als Jaulen (Wow) und schnelle Schwankungen als Wimmern (Flutter) bemerkbar.

Beim Abspielen der Schallplatten sollte man von Zeit zu Zeit überprüfen, ob die Solldrehzahl eingehalten wird. Dazu ist eine Stroboskopscheibe eine gute Hilfe, die bei vielen Plattenspielern bereits im Plattenteller integriert ist. Stimmt die Drehzahl nicht, so kann sie bei den meisten Geräten im Bereich von ± 3% nachgestellt werden. Abweichungen von 0,5% sind noch zu vertreten. Ist aber die Solldrehzahl am Plattenspieler nicht mehr einzustellen, muß das Antriebssystem überprüft werden.

Die Skatingkraft muß kompensiert werden

Die Skatingkraft ist eine Eigenart von gekröpften (abgewinkelten) Tonarmen und tritt beim Tangential-Tonarm nicht auf. Sie wirkt radial auf den Tonarm und zieht den Tonabnehmer zur Plattenmitte hin. Das hat die Folge, daß die innere Flanke der Tonrille (bei Stereoplatten dem linken Kanal zugeordnet) stärker abgetastet wird als die rechte Flanke. Neben dem ungleichen Verschleiß von Platte und Abtastnadel ergibt sich so auch eine verfälschte Wiedergabe.

Der Wert der Skatingkraft ist vor allem abhängig von der Auflagekraft, der Spitzenverrundung der Nadel sowie von der Geometrie des Tonarmes. Bei sphärisch (konisch) geschliffenen Abtastnadeln erreicht die Skatingkraft Werte von 10% der Auflagekraft. Sie ist bei kleinerem Verrundungsradius der Nadel noch größer.

Gute Plattenspieler enthalten eine Antiskatingeinrichtung. Diese erzeugt eine der Skatingkraft entgegenwirkende Kraft und hebt ihre störende Wirkung auf. Die Antiskatingkraft wird auf unterschiedliche Weise erzeugt: Zum Beispiel durch eine Feder, durch Magnetfelder oder durch ein umgelenktes Gewicht. Wichtig ist, daß am Plattenspieler die Antiskatingkraft auf die Auflagekraft des Tonabnehmers und den Nadelschliff eingestellt wird. Dafür sind an der Antiskatingeinrichtung zwei Skalen angebracht, eine für Nadeln mit sphärischem und eine für solche mit elliptischem (biradialem) Schliff.

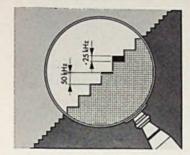
Rundfunk-Empfänger

Bausteine für die elektronische Programmwahl

In die Endrunde geht bei AEG-Telefunken die Entwicklung neuer integrierter Schaltungen für die elektronische Programmwahl. Die ICs sind Bausteine für das "System 1000", mit dem sowohl einfache "Open-Loop"als auch "Closed-Loop"-Abstimmschaltungen gebaut werden können. Wie die Autoren berichten, ist es gelungen, einige der beiden Abstimmkonzepten anhaftenden Nachteile beträchtlich zu entschärfen. So soll bei Open-Loop-Systemen die Konstanz der Abstimmung von den Betriebsbedingungen unabhängig sein, und bei Closed-Loop-Systemen "Gleichlaufabweichungen" zwischen dem Oszillatorkreis und den Eingangskreisen unter 0,3% liegen.

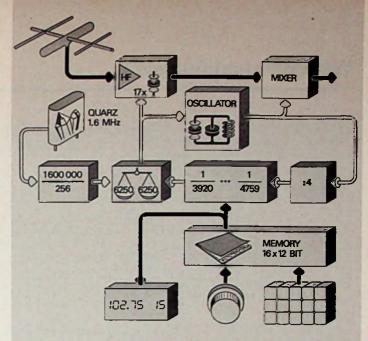
Noch vor einigen Jahren wurde der automatische Sendersuchlauf in Autoradios ausschließlich motormechanisch durchgeführt. Heute wird dafür, die elektronische Abstimmung benuzt, bei der als Abstimmelemente "Varaktordioden" (kapazitive Abstimmung) verwendet werden. Diese Halbleiterbauelemente ermöglichen eine hohe Abstimmgeschwindigkeit, sind zuverlässig und haben nur einen geringen Raumbedarf.

Dieser Beitrag geht auf ein Fachreferat zurück, das Ing. (grad.) Heinz Rinderle, bei AEG-Telefunken Leiter der Abteilung Schaltungstechnik Konsumbauelemente im Geschäftsbereich Halbleiter, Heilbronn, und der mittlerweile in einer amerikanischen AEG-Niederlassung tätige Dr.-Ing. Christopher Malinowski, anläßlich des 15. Technischen Presse-Colloquium gehalten wurde.


Den Vorteilen stehen allerdings auch gewichtige physikalische Nachteile gegenüber, die nur schwer zu überwinden sind und dabei zusätzliche Kosten verursachen. Beispielsweise kommt es durch die Nichtlinearität im Kapazität-Spannungs-Verlauf der zur Abstimmung verwendeten Varaktordioden zu Intermodulation und Kreuzmodulation. wenn größere Signalspannungen anliegen. Ein Problem ist auch die Streuung im Kapazität-Spannungs-Verlauf, wodurch unter anderem bei AM der Frequenzgleichlauf zwischen den abzustimmenden Schwingkreisen so stark beeinträchtigt wird, daß die Empfindlichkeit des Empfängers spürbar schwankt. Der Weg zum rein elektronisch abgestimmten Radio mit hoher Empfangsqualität bleibt also noch mit technischen Problemen gepflastert.

Im Rahmen dieser Aufgabe hat AEG-Telefunken die Entwicklung eines Systems von integrierten Schaltungen begonnen, mit dem erstmals auch der praktisch vollkommene Frequenzgleichlauf zwischen dem Überlagerungsoszillator und den Eingangsabstimmkreisen eines Superhetempfängers möglich wird.

Die 7 Bausteine des Systems 1000


Mit den integrierten Schaltungen des Systems 1000 können in elektronisch abstimmbaren Rundfunkempfängern verschiedener Art und Klasse sowohl die einfachen "Open-Loop"-Abstimmkonzepte als auch "Closed-Loop"-Abstimmkonzepte, dank einer neuartigen "Frequenz-Prozessor"-Technik, angewendet werden. Für "Frequenzsynthesizer" ist ein IC eigens zur Kontrolle des Frequenzgleichlaufs im AM-Tuner vorgesehen, und für die Abstimmanzeige mit einer LED-Zeile wird eine integrierte Steuerschaltung entwickelt, die

Die genauesten Digital-Tuner aus aller Welt lassen sich im 50 kHz-Kanalraster abstimmen. Revox halbiert auf quarzgenaue 25 kHz-Schritte.

Der Revox Stereo-UKW-Tuner B760 liegt quarzaens: liegt quarzgenau auf der Mitte jeder Senderfrequenz.

Während die UKW-Sender in den USA um jeweils 200 kHz versetzt sind, beträgt der Abstand von Sender zu Sender in Europa üblicherweise nur 100 kHz. Die normalen 50 kHz-Abstimmschritte des B760 ermöglichen also ein sicheres Abstimmen jedes Senders. Da die Sendefrequenzen in Gebieten mit hoher Senderdichte aber noch nöher beieinander liegen können, lassen sich die 50 kHz-Schritte durch Tastendruck sogar auf 25 kHz halbieren. Mit 840 Schritten im 25 kHz-Kanaltraster empfängt der Revox Tuner B760 alle Sendefrequenzen, auch versetzte – etwa bei grossen Gemeinschaftsanlagen –, in optimaler Qualität.

Quarzgenaver Frequenz-Synthesizer: Nie mehr nachstimmen!

Nie mehr nachstimment
Starke wie schwächste Sender lassen sich
scharf getrennt empfangen: Nur Frequenzziffer einstellen – sie leuchtet auf zwei Kommastellen genau auf. Der Synthesizer, ein
aufwendiges Digitalsystem mit Quarzreferenz, sorgt für ständige, präzise Mittenabstimmung. Ein Fangsystem IAFCI, das
schwächere Sender überfährt und Verzerrungen erzeugt, ist überflüssig. Selbst
schwächste Antennensignale werden verwertet, denn hervorragende Trennschärte
und Empfindlichkeit zeichnen diesen Tuner
aus. Zwei Präzisionsinstrumente erleichtern
das Abstimmen: Eines misst das Antennensignal des Senders in einem sehr weiten signal des Senders in einem sehr weiten Bereich, das andere zeigt die exakte Ab-stimm-Mitte an.

15 elektronisch quarzgenau gespeicherte Stationstrequenzen

gespeicherte Stattonsfrequenzen per Tastendruck abrufen
Die exakten Frequenzen oft gehörter Stationen sowie die frei wöhlbaren Positionen der 15 Stationstasten werden durch ein CMOS-Memory rein elektronisch gespei-chert. Auch bei obgeschaltetem Gerät wird die Speichereinheit mit Strom versorgt. Selbst Netzunterbrüche beeinflussen den Speicher nicht; in einer Sicherheitswanne liegende Batterien können die Stromversor-aung des Speichers im Bedarkfall mehr als gung des Speichers im Bedarfsfall mehr als ein Jahr lang sichern.

Kurzportrait des Stereo-UKW-Tuners Revox B760

Einzigartiger Bedienungskomfort. 15 Stationstasten. Quarzgenaue, elektronisch programmierbare Speicherung.
 Einziger echter Digital-Frequenz-Synthesizer mit 840 quarzgenauen Schritten im 25 kHz-Krealvette.

sizer mit 840 quar 25 kHz-Kanalraster.

• Frequenz- und Stationsanzeige mit LED-Leuchtziffern,

Rauschfreie Abstimmung dank Muting

Stummschaltung).

Einstellbare Mutingschwellen für alle Stationen oder nur Stereosender (Threshold-Regler Stereo/Inter Station).

Stereo HIGH-BLEND für schwache

Sender.

Eingebauter, regelbarer Kopfhörerver-

Starker.
Emplangsbereich 87,00...107,975 MHz.
Genauigkeit 0,005%.
Trennschärte 80 dB. Fremdspannungsabstand 75 dB. Frequenzgang 30 Hz...15 kHz±1dB.

Antennenanschlüsse symmetrisch und koaxial. Vorbereitet für programmierbare Antennenrator-Steuerung.

Empfang auf höchster Ebene: Revox B760.

Revox bis Ins Detail
Der B760 mit elektronischem Steuergerät dreht Rotorantennen automatisch in die für tadellosen Empfang beste Position; der Anschluss ist vorbereitet.
Für exakte Antennenkorrektur kannam B760

Oszilloskop angeschlossen werde

Revox denkt an die Zukunftsmusik;
 Die Vorarbeiten für rauschunterdrückte
 UKW-Sendungen einiger europäischer Stationen sind im Gange; der B760 ist für Dolby*-Empfang vorbereitet.

Dolby ist ein eingetragenes Warenzeichen der Dolby Laboratories Inc.

Revox bis ins Detail

Gutschein: Alles über die Revox HiFi-Kette.

Bitte an die Landesvertretung einsenden. Sie erhalten kostenlos die neue, umfassende Revox-Dokumentation.

Vorname, Name:

Strasse, Nummer:

Postleitzahl, Ort.

STUDER REVOX

WILLI STUDER GmbH, Talstrosse 7, D-7827 Löffingen, Hochschwarzwald REVOX ELA AG, Althordstrasse 146, CH-8105 Regensdorf-Zürich STUDER REVOX GmbH, Ludwiggasse 4, A-1180 Wien

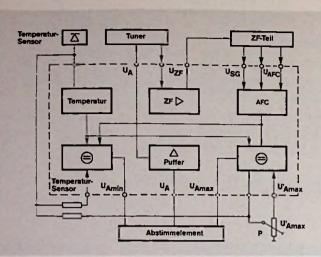


Bild 1. Blockschaltung des TDA 1093. Die Abstimmspannungen $U_{\rm Amin}$ und $U_{\rm Amax}$ werden getrennt erzeugt und die tatsächliche Abstimmspannung $U_{\rm A}$ gelangt über einen Puffer zum Tuner. Zur Kompensation des Temperatureinflusses und zur Nachstimmung dienen die Blöcke "Temperatur" und "AFC"

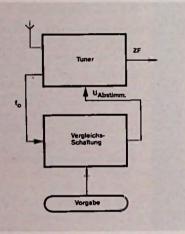


Bild 2. Prinzip eines Closed-Loop-Abstimmsystems. Die Oszillatorfrequenz wird mit einer von der Vorgabe abhängigen Sollfrequenz verglichen. Vom Ergebnis des Vergleichs wird der zur Abstimmung nötige Wert der Abstimmspannung U_{Abstimm}, abgeleitet

durch eine neue Daten-Kompressions-Technik, zum Ansteuern von über 50 LED, nur acht Leitungen benötigt.

Das System 1000 setzt sich gegenwärtig aus folgenden integrierten Bausteinen zusammen:

TDA 1062: FM-Tuner

TDA 1093: Abstimminterface für Ope-

n-Loop-Systeme

TDA 1094 N: Abstimminterface für Closed-Loop-Systeme

TDA 1094 S: Gleichlauf-Kontroller für Frquenz-Synthesizer

U 1095 B: Kontroller für automatischen Suchlaufstopp

U1096B: LED-Treiber

V 1000P: Multielement-LED-Zeile Lieferbar sind zur Zeit jedoch nur der bereits im Markt eingeführte TDA 1062 und in Musterstückzahlen auch der TDA 1093.

Open-Loop-Abstimmung für einfache Empfänger

Da bei Open-Loop-Systemen die Abstimmung durch einen spannungsgesteuerten Oszillator erfolgt und keine Frequenzkontrolle vorgenommen wird, gibt es erhebliche Probleme hinsichtlich Konstanz und Reproduzierbarkeit der Abstimmung, wenn sich Betriebsbedingungen, wie die Betriebsspannung oder die Umgebungstemperatur ändern. Mit einer automatischen Nachstimmung (AFC) können die Auswirkungen nur gemildert, jedoch nicht beseitigt werden. Ein anderes Sorgenkind ist die Abstimmanzeige, deren Genauigkeit insbesondere von der Streuung des Kapazitäts-Spannungs-Verlaufs der Varaktordioden bestimmt wird. Auch die digitale Abstimmung mittels Spannungssynthese ändert nichts an diesen Problemen.

Wegen des einfachen und übersichtlichen Aufbaus, der hohen Abstimmgeschwindigkeit sowie fehlender Eigenstörungen (Störstrahlung) bringen Open-Loop-Systeme dennoch zufriedenstellende Ergebnisse, vorausgesetzt, daß die systembedingten technischen Probleme hinreichend gelöst werden. Ein Schritt in diese Richtung ist die integrierten Schaltung TDA 1093 mit den Features:

- Stabilisierung der Abstimmspannung gegen Betriebsspannungsänderungen.
- O Einstellbare/programmierbare Abstimmspannung.
- Einstellbarer/programmierbarer
 Temperaturkoeffizient der Abstimmspannung.
- O Steuerbare Veränderung der Abstimmspannung durch das AFC-Signal.
- O Puffern der Abstimmspannung zur Entlastung des Abstimmelementes (Abstimmpotentiometer oder D/A-Wandler).
- O ZF-Vorverstärker.

Die Verknüpfung der einzelnen Schaltungsteile innerhalb und außerhalb des ICs zeigt in vereinfachter Form Bild 1. Die minimale und maximale Abstimmspannung $U_{\rm Amin}$ und $U_{\rm Amax}$ werden getrennt erzeugt und dem externen Abstimmelement zugeführt, das am einfachsten ein Potentiometer ist. Die von ihm durch Spannungsteilung gewonnene Abstimmspannung $U_{\rm A}$ wird dem Pufferverstärker zugeführt, und steht dann dem Tunerteil des Empfängers zur Verfügung.

Mit "AFC" und "Temperatur" sind die Schaltungsteile bezeichnet, die zur automatischen Nachstimmung und zur Kompensation des Temperatureinflusses dienen. Der AFC-Schaltungsteil wird dazu vom ZF-Teil des Empfängers mit der frequenzabhängigen Spannung UAFC und einer die AFC-Wirkung steuernden Spannung $U_{\rm SG}$ angesteuert. Sein Ausgangssignal ändert den Wert der minimalen und maximalen Abstimmspannung derart, daß die AFC-Steilheit und der Frequenzhaltebereich über den gesamten Abstimmbereich nahzu konstant bleiben. Durch das Steuern der AFC-Wirkung über Usg ergeben sich vielseitige Optimierungsmöglichkeiten, insbesondere für Sendersuchlauf-Konzepte.

Die "Temperatur"-Schaltung erzeugt einen konstanten Strom, der eine als Temperatursensor wirkende Diode durchfließt. Da die Spannung an dieser Diode von der Umgebungstemperatur mitbestimmt wird, ist es möglich, die minimale und maximale Abstimmspannung auch dadurch zu beeinflussen. Mit zwei externen Widerständen kann die Temperaturabhängigkeit der mini-

malen und maximalen Abstimmspannung unabhängig voneinander eingestellt werden. Damit erübrigen sich temperaturgangkompensierende Maßnahmen in den Abstimmkreisen, so daß die für die Durchstimmung des Empfangsbereiches erforderliche Abstimmspannung einen niedrigeren Wert haben darf.

Der ZF-Verstärker hat die Aufgabe, das vom Tuner (FM) gelieferte ZF-Signal vorzuverstärken, um damit die Einfügungsdämpfungen der ZF-Filter auszugleichen.

Wird als Abstimmelement ein D/A-Wandler verwendet, bleiben alle Vorteile erhalten, und "digitale" Abstimmsysteme sind ohne Verlust an Leistungsfähigkeit adaptierbar. Ein weiterer Vorteil des TDA 1093 ist seine niedrige Betriebsspannung und sein niedriger Betriebsstrom. Die Betriebsspannung muß nämlich nur 1 V höher sein als die maximale Abstimmspannung, und die Stromaufnahme der gesamten Abstimmelektronik kann kleiner als 3 mA (10 V Betriebsspannung) gehalten werden. Das bewirkt eine geringe Betriebsleistung und eine nur geringfügige Erhöhung der Chiptemperatur gegenüber der Umgebung (weniger als 3 °C). Daraus resultieren wiederum ein kaum merkbares Einlaufverhalten, eine hohe Parameterkonstanz und erhöhte Zuverlässigkeit. Wegen der geringen Betriebsleistung ist der IC auch für den Stand-by-Betrieb gut geeignet.

Das Puffern der Abstimmspannung erleichtert die Anwendung eines neuartigen Abgleichkonzeptes für den einmaligen Abgleich des FM-Tuners und ermöglicht den problemlosen Anschluß einer analogen Abstimmanzeige ohne Belastung des Abstimmelementes. Obwohl der IC TDA 1093 ursprünglich nur für FM-Abstimmteile vorgesehen war, ist er mit einer anderen Beschaltung auch für den AM-Abstimmteil eines Rundfunkempfängers verwendbar. Der Baustein wird in zwei Ausführungen zur Verfügung stehen: Zum einen als TDA 1093 A wie beschrieben und zum anderen als TDA 1093 B, der zusätzlich einen integrierten Temperatursensor enthält. Die A-Version ermöglicht eine hohe Flexibilität im Empfängeraufbau und eine Temperatureinfluß-Kompensation für hohe Ansprüche. Bei der B-Version ist bei Verwendung des integrierten Temperatursensors eine thermische Kopplung zwischen IC und dem Empfangsoszillator erforderlich.

Closed-Loop-Abstimmung für hohe Ansprüche

Bei einem herkömmlichen Closed-Loop-Abstimmsystem wird die Abstimmspannung für die Varaktordioden des Tuners aus dem Frequenzvergleich zwischen der vorgegebenen quarzstabilen Sollfrequenz und der Frequenz des Empfangsoszillators abgeleitet. Mit einer Vergleichsschaltung bildet der Empfangsoszillator dann eine geschlossene Frequenzregelschleife (Bild 2).

Die bekannteste und gebräuchlichste Form eines Closed-Lopp-Systems ist das PLL-System (Phase Locked Loop), wie es auch im Frequenzsynthesizer angewandt wird, PLL-Systeme bestechen durch ihre Frequenzkonstanz sowie durch die Möglichkeiten, die Abstimmfrequenzen über eine Tastatur vorzugeben und die eingestellte Frequenz oder den Kanal numerisch anzuzeigen. Dies ist aufgrund der digitalen Struktur des Systems einfach zu bewerkstelligen. Andererseits haben PLL-Systeme auch Nachteile, die ebenfalls auf die digitale Struktur zurückzuführen sind. Die wesentlichen

- O Die aus Kostengründen begrenzte Auflösung des Frequenzrasters für die Abstimmung und für die ZF-Programmierung. Dadurch ist nicht immer das Einstellen auf optimale Empfangsqualität gewährleistet.
- O Die mögliche Abstimmgeschwindigkeit ist wegen der "langsamen" Regelschleife begrenzt. Daher ergibt sich beim automatischen Sendersuchlauf eine lange Suchlaufdauer.
- O Die digitale Signalverarbeitung im Abstimmteil und bei der Frequenzanzeige verursacht Eigenstörungen, die nur durch aufwendige Maßnahmen, wie Filtern und Abschirmen, in zumutbaren Grenzen bleiben.

Darüber hinaus sind der Leistungsbedarf und die Kosten für PLL-Systeme ein zusätzliches Hemmnis; die Anwendung in "Billig"-Geräten dürfte an der Kostenbarriere scheitern.

Die Forderung nach technischen Verbesserungen und niedrigeren Kosten für elektronische Abstimmsysteme führte zur Entwicklung einer neuen Closed-Loop-Abstimmung, deren Eigenschaften von einer bei AEG-Telefunken entwickelten "Frequenz-Prozessor"-Technik bestimmt werden. In der gegenwärtig noch laufenden Entwicklung der erforderlichen integrierten Schaltungen werden zwei Zielrichtungen

verfolgt: Das Verbessern zukünftiger Frequenzsynthesizer durch Gleichlaufkontrolle der Empfangskreise und des Oszillatorkreises (TDA 1094 S), sowie alternative Konzepte unter ausschließlicher Verwendung der neuen Frequenz-Prozessor-Technik (TDA 1094N).

Kein Frequenzraster bei der Frequenz-Prozessor-Technik

Die Frequenz-Prozessor-Technik, im folgenden kurz mit FPT bezeichnet, beruht auf dem an sich bekannten analogen Frequenzvergleich. Die Funktion einer FPT-Einheit sei kurz erläutert anhand von Bild 3, wo der Grundaufbau und die Funktionsgleichung einer FPT-Frequenzregelschleife, bestehend aus einem Frequenz-Komparator und einem spannungsgesteuerten Oszillator (VCO), dargestellt ist. Die Oszillator-

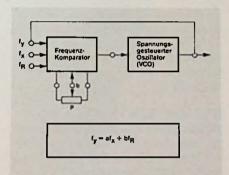


Bild 3. Grundaufbau und Funktionsgleichung einer FPT-Regelschleife. f_y Oszillatorfrequenz, f_x , f_R Frequenz der Eingangssignale, b, (a) einstellbare Koeffizienten

frequenz f_y folgt der angegebenen Funktion. Danach kann f_y sowohl über die Frequenzen f_X und f_R der Eingangssignale als auch über den extern einstellbaren Koeffizienten b gesteuert werden, zum Beispiel über das Potentiometer P. Grundsätzlich gilt dies auch für den Koeffizienten a.

Ein Vorteil des Verfahrens sind kurze Regelzeitkonstanten in der Schleife, da der Frequenzvergleich bei hohen Frequenzen durchgeführt wird. Aus den kurzen Einstellzeiten resultieren dann auch kurze Abgleichzeiten, und weil das System eine analoge Struktur aufweist, gibt es keine Begrenzung der Frequenzauflösung. Abstimmsysteme

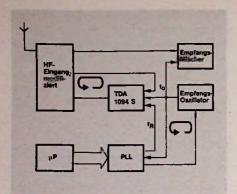


Bild 4. Frequenzsynthesizer mit Gleichlauf-Regelkreis. Der Empfangsoszillator wird wie üblich mit einer PLL-Schaltung kontrolliert, wogegen die Abstimmung der HF-Eingangsschaltung von einer FPT-Regelschleife (TDA 1094 S) überwacht wird

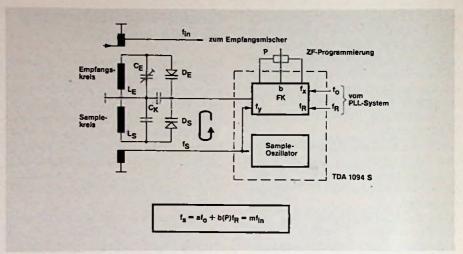


Bild 5. FPT-Regelschleife (TDA 1094 S) und Funktionsgleichung für die Samplefrequenz f., FK Frequenzkomparator

können sowohl mit analogen Abstimmelementen (Potentiometer) als auch mit digitalen Abstimmelementen (D/A-Wandler) aufgebaut werden. Schließlich ist noch eine frequenzlineare analoge Abstimmanzeige möglich, unabhängig von der Charakteristik der Varaktordioden.

Mit dem IC TDA 1094 S gibt es keine Gleichlaufprobleme

Der bereits erwähnte Gleichlauffehler von Varaktordioden äußert sich in einer Empfindlichkeitsschwankung, die im MW-Empfangsbereich erfahrungsgemäß maximal 6 dB ausmacht. Die Hauptsache hierfür ist, neben der Streuung der Varaktordioden selbst, die beim Superhet-Empfänger theoretisch nur in drei Punkten des Frequenzbandes mögliche Übereinstimmung zwischen der Ist- und der Sollfrequenz-Abstimmung der Eingangsschwingkreise. Mit der FPT ist es nun möglich, diesen Dreipunkt-Gleichlauf auf einen fast vollkommenen Gleichlauf zu verbessern, indem für die Eingangsabstimmkreise eine vom Empfangsoszillator getrennte zweite Frequenz-Regelschleife verwendet wird. Dieses Konzept mit TDA 1094 S ist im Bild 4 dargestellt. Danach wird der Empfangsoszillator über eine PLL-Regelschleife in bekannter Art kontrolliert. Die zweite Frequenzregelschleife, eine FPT-Frequenzregelschleife, kontrolliert die Abstimmung der HF-Eingangsschaltung.

Dem TDA 1094 S werden aus der PLL-Regelschleife die konstante Referenz-

frequenz f_R sowie das in der Frequenz f_{O} variable Oszillatorsignal zugeführt. Die FPT-Frequenzregelschleife für diese Schaltung erläutert Bild 5. Der für dieses Konzept erforderliche TDA 1094 Senthält den Frequenzkomparator FK und den Sample-Oszillator. Die übliche HF-Eingangsschaltung ist durch einen Sample-Kreis mit der Varaktordiode D_s erweitert, wobei der Sample-Kreis durch C_K vom Empfangskreis entkoppelt ist. Der Sample-Oszillator erregt den Sample-Kreis auf seiner Resonanzfrequenz. Seine Frequenz fs wird dabei von der FPT-Regelschleife nach der im Bild angegebenen Beziehung bestimmt. Dabei kann mit einem Pontiometer P ein konstanter Frequenzversatz so eingestellt werden, daß $f_{\rm S}$ immer das m-fache der Empfangsfrequenz beträgt. Da m das Vielfache der Eingangsfrequenz fin (z.B. 2...4) sein kann, treten Eigenstörungen kaum auf.

Unter der Annahme, daß der Kapazitäts-Spannungs-Verlauf der Varaktordioden D_F und D_S übereinstimmt, läßt sich mit dem Abgleich von Le und Ce der absolute Sollfrequenzvergleich des Empfangskreises erreichen. Abweichungen vom idealen Gleichlauf können bei diesem Verfahren nur noch durch Unterschiede in den Varaktordioden im Empfangskreis und Samplekreis entstehen. Die Charakteristik der Varaktordiode des Empfangsoszillators ist dabei für den Gleichlauf völlig belanglos. Grundsätzlich könnte der Empfangsoszillator auch auf andere Art und Weise unter Umgehung einer

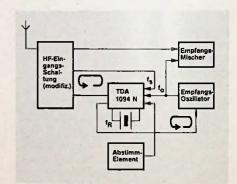


Bild 6. FPT-Abstimmsystem mit TDA 1094 N

Varaktordiode abgestimmt werden. Wie Untersuchungen an umgebauten Frequenzsynthesizern zeigten, sind mit herkömmlichen gepaarten Varaktordioden für den MW-Bereich Gleichlauffehler unter 0,3% erreichbar.

FPT-Abstimmsystem ohne PLL-Baustein

Empfänger, für die aus technischen oder wirtschaftlichen Gründen die Anwendung von PLL-Systemen nicht infrage kommt, ist das FPT-Abstimmsystem mit dem Schaltkreis TDA 1094 N eine interessante Alternative. Es vereinigt nämlich die Vorteile eines FPT-Closed-Loop-Abstimmsystems mit der Handhabung und den geringen Kosten eines Open-Loop-Systems, wobei sowohl analoge Abstimmelemente als auch digitale Abstimmele-

Zielgruppe: AV-Profis

VIDEOGRAFIE, — Magazin für angewandte Audiovision in Praxis und Hobby bietet Ihnen 1980 viermal die Gelegenheit, Ihr Angebot an die aktiven AV-Anwender heranzutragen. Im März, Juni, September und Dezember.

Wir informieren Sie gerne über die Insertionsmöglichkeiten.'

VIDEOGRAFIE, Anzeigenabteilung Lazarettstraße 4 · 8000 München 19 Telefon (089) 18 60 51 · Fernschreiber 5 216 075

Pflaum Verlag KG · München

Wir sind an einer A essiert und bitten un	Anzeige in VIDEOGR	AFIE inter-
□ ausführliches Info □ ein Angebot über □ ein Angebot über	1/1 1/2 1/4 1	/s Seite
Firmenstempel	Unterschrift	Datum

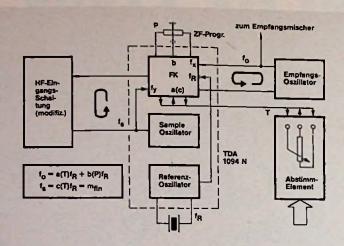


Bild 7. Blockschaltung unf Funktionsgleichungen des FPT-Abstimmsystems. Gegenüber der S-Version enthält der IC TDA 1094 N einen Oszillator zum Erzeugen der Referenzfrequenz

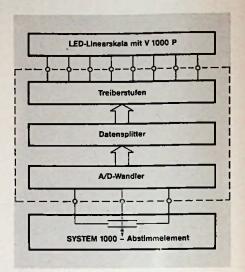


Bild 8. Abstimmanzeige mit LED-Linearskala

mente verwendet werden können (Bild 6). Beim Vergleich dieses Konzepts mit dem der Gleichlaufkontrolle für Frequenzsynthesizer (Bild 4) zeigt sich als einziger Unterschied, daß die PLL-Frequenzregelschleife durch eine FPT-Frequenzregelschleife ersetzt ist und daß die Referenzfrequenz f_R im TDA 1094 N selbst erzeugt wird. Der IC enthält gegenüber der S-Version einen zusätzlichen Oszillator (Bild 7) zum Erzeugen der quarzgenauen Referenzfrequenz sowie einen erweiterten Frequenz-Komparator FK mit einem zusätzlichen Steuereingang für den Koeffizienten a bzw. c in den angegebenen Abstimmgleichungen. Über diesen Steuereingang werden die Frequenz des Empfangsoszillators und des Sample-Oszillators von dem Abstimmelement gesteuert. In den Gleichungen für f_0 und f_s ist T der Teilerfaktor des Abstimmelementes und P der Teilerfaktor der ZF-Programmierung. Da sich a bzw.'c proportional mit dem Teilerfaktor T ändern, besteht ein linearer Zusammenhang zwischen der Empfangsfrequenz und dem Teilerfaktor T. Das hat besondere Bedeutung für die Abstimmanzeige. Die Anzeige des Teilerfaktors, beispielsweise mit einer LED-Skala, ist dann nämlich auch frequenzlinear und zudem unabhängig vom Kapazitäts-Spannungs-Verlauf der Varaktordioden.

Das Konzept des TDA 1094 N ist speziell auf AM-Tuner ausgerichtet, wo es Gleichlaufprobleme gibt. Wie Versuche zeigten, sind ungewöhnlich kurze Einschwingzeiten von weniger als 10 ms erreichbar. Die gemessene Abstimm-Nichtlinearität war kleiner als 10⁻⁴ und der erzielte Gleichlauf ebensogut wie beim TDA 1094 S.

Abstimmanzeige nach Maß

Auf die Frage, welche elektronische Abstimmanzeige bedarfsgerecht ist, gibt es mehrere Antworten. Sie ergeben sich, wenn man die vielfältigen Geräteklassen, die Gerätearten, die unterschiedlichen Gewohnheiten von Rundfunkhörern sowie die Kosten und die Zuverlässigkeit der verschiedenartigen Abstimmanzeigen betrachtet. Dabei stellt sich die grundsätzliche Frage, ob die numerische Anzeige die analoge verdrängen wird.

Die Linearskala liegt gut im Rennen

Die Mehrzahl der technisch interessierten Rundfunkhörer sowie "Wellenjäger" begrüßen sicherlich die numerische Frequenz- oder Kanalanzeige. Dagegen dürfte ältere Menschen und dem Rundfunk-Normalverbraucher der Ersatz der gewohnten Linearskala durch eine "Computeranzeige" nicht glücklich stimmen, und diese Gruppen werden eine solche Anzeige kaum zu nutzen wissen. Für sie ist die "elektronische Linearskala" erfahrungsgemäß eine wünschenswerte Alternative. Sicher ist, daß für beide Arten von Abstimmanzeigen ein Bedarf besteht. Wahrscheinlich wird die Analoganzeige überwiegen, zumal damit der Gerätedesigner mehr Möglichkeiten hat, eine verkaufsfördernde Gerätegestaltung zu verwirklichen. Diese Aspekte sowie Marktanalysen waren für AEG-Telefunken mitbestimmend bei der Entscheidung, ein optoelektronisches Abstimmanzeige-Konzept für Linearskalen zu entwickeln. Begünstigt wurde diese Entscheidung noch durch weitere Vorzüge einer elektronischen Linearskala:

- O Eigenstörungen, wie sie sonst durch Multiplexen entstehen, treten infolge des statischen Betriebes nicht auf.
- Der Leistungsbedarf ist mit LED-Anzeigen bei gleicher Helligkeit viel geringer als im Multiplexbetrieb.
- Die quasianaloge Abstimmanzeige läßt sich sehr gut in die Konzeption des Systems 1000 einfügen.

Diese Probleme galt es zu meistern

Bei einer LED-Linearskala bringen der Aufwand an Treiberstufen, die Montagekosten und die Zuverlässigkeit Schwierigkeiten für den Gerätehersteller, die mit der Zahl der Leuchtpunkte zunehmen. Deshalb konnte auch der berechtigten Marktforderung nach Opto-Skalen hoher Auflösung nicht entsprochen werden. Das Kosten-/Nutzen-Optimum lag bisher bei 16 über eine integrierte Treiberschaltung angesteuerten Leuchtpunkten je Skala. Mehr Leuchtpunkte bedingen zusätzliche integrierte Treiberschaltungen.

Das Zuverlässigkeitsproblem und der Montageausfall sind oft auf die erforderliche große Zahl von Verbindungen zurückzuführen, oder auf den Bruch der gedruckten, meist sehr dünnen Verbindungsleitungen von den LEDs zur Treiberschaltung.

Daten-Kompression statt Multiplex-Betrieb

Die Schwachstellen konnten jetzt mit Hilfe einer neuen Daten-Kompression-Technik nahezu ausgemerzt werden. Sie basiert auf einer Art "kombinatorischen Logik" auf der Senderseite und einer dazu angepaßten Matrixtechnik auf der Empfängerseite. Mit der neuen Technik ist ein achtstelliges 7-Segment-Display oder eine aus 56 Leuchtpunkten bestehende Linearskala über nur acht Leitungen anzusteuern. Bei der Verwendung für eine Linearskala ist zum Ansteuern jeweils nur eines Leuchtpunktes, wie dies für eine Empfängerskala benötigt wird, keine Multiplextechnik erforderlich.

Diese Technik in Verbindung mit einem dem System 1000 angepaßten Steuereingang wird in der integrierten LED-Treiberschaltung U 1096 B angewendet. In Bild 8 ist die Blockschaltung und die dazugehörige LED-Linearskala mit dem integrierten Multielement-Display V 1000 P dargestellt.

Eine weitere Besonderheit des Konzeptes ist der A/D-Wandler. Er ist so konzipiert, daß sein Eingang direkt von

Bild 9. Ein- und Ausgangsfunktionen einer optimalen Steuerschaltung für den Sendersuchlauf

Eingangs- funktionen AFC (AM/FM) AGC (Feldstärke) Stereo-/ Sender- kennsignal Ausgangs- funktionen Suchlauf- oszillator Vor-, Rückla Stopp Empfindlich- keitsschalte	
AGC Vor-, Rückla (Feldstärke) Stopp Stereo-/ Empfindlich- kennsignal	
Suchlaufart Scan Mode - Wartezeit Suchlauf- geschwindigkeit Suchlauf Start/Stopp	r ten-

der analogen Abstimmeinheit des Empfängers gesteuert werden kann, so daß die Anzeige auf der LED-Skala nur vom Teilerverhältnis des Abstimmelementes und nicht von den anliegenden Spannungen bestimmt wird. Die Leuchtpunkte an den Enden der Skala sind immer den Einstellendpunkten des Abstimmelementes zugeordnet.

Eine Modifikation des U 1096 B ermöglicht das Anpassen der elektronischen Linearskala auf rein digital arbeitende Abstimmsysteme, wie Frequenzsynthesizer. In diesem Falle muß der A/D-Wandler (in Bild 8) durch einen entsprechenden Binär-Decoder ersetzt werden. Dieser wird dann, je nach geforderter Auflösung, vom digitalen Abstimmsystem mit einem parallelen 4-bis 6-bit-Wort gesteuert.

Baustein U 1095 B stoppt den Suchlauf

Sendersuchlauf-Systeme benötigen eine automatische Steuerung des Abstimmvorgangs, wobei bestimmte Signalkriterien berücksichtigt werden müssen. Das Hauptproblem in digitalen Sendersuchlauf-Systemen ist das zuverlässige Erzeugen des Suchlauf-Stoppsignals, insbesondere dann, wenn kurze Zeiten für den Sendersuchlauf und eine hohe Abstimmgenauigkeit verlangt werden. Wie es sich gezeigt hat, werden in solchen Systemen vielfach schächere Signale "überfahren", die bei Handabstimmung gut empfangen werden könnten. Ferner konnte beobachtet werden, daß der Suchlaufstopp oft bei unerwünschten Nebenempfangsstellen oder mehrmals beim gleichen Sendersignal ausgelöst wird. Eine besonders kritische Situation besteht, wenn starke "Prasselstörungen" an den Empfängereingang gelangen. In diesem Falle wird in dauernder Folge der Suchlaufstopp ausgelöst, wodurch der Sendersuchlauf über das gesamte Empfangsband sehr viel Zeit benötigt.

Diese und andere Aspekte wurden beim Konzipieren des Abstimmkontrollers U 1095 B besonders berücksichtigt, dessen Funktion die Steuerung der digitalen Sendersuchlauf-Schaltung ist. Damit sind folgende Suchlaufarten unter Berücksichtigung der Signalfeldstärke, des Stereosignals und der Senderkennsignale (Verkehrswarnfunk) möglich:

O Suchlaufstopp mit manuellem Suchlaufstart (Search Mode)

O Suchlaufstopp mit automatischem

Suchlaufstart nach vorgegebener Wartezeit (Scan Mode)

O "Suchlauf" mit unterdrücktem Stopp für beide Richtungen

Die zweite Suchlaufart ist für Autoradios interessant, weil damit ein automatischer Programmsuchlauf möglich ist. Die Suchlauf-Stopptaste braucht nur bei dem gewünschten Programm während der Wartezeit betätigt werden. Als Wartezeit, in der man sich für einen Sender entscheiden muß, sind 4 s bis 8 s zweckmäßig. Die Suchlaufart mit unterdrücktem Stopp erlaubt das "Überfahren" bestimmter Bereiche des Empfangsbandes.

Weitere Nebenfunktionen, die eine Steuerschaltung für den Sendersuchlauf ausführen muß, sind die Stummschaltung des NF-Signals während des Suchlaufvorgangs und das Aufheben einer möglicherweise beim Suchlaufvorgang vorgegebenen Empfindlichkeits-Reduzierung nach Suchlaufstopp. Die erforderlichen Ein- und die Ausgangsfunktionen einer solchen Steuerschaltung zeigt Bild 9. Bei der Realisierung dieser Funktionen im Schaltkreis U 1095 B konnte AEGTelefunken auf das Know-how der Fernseh-Abstimmelektronik bauen.

Abschließend sei noch darauf hingewiesen, daß die Steuerung der Empfängerabstimmung mittels der beschriebenen Systeme einschließlich der Programmspeicherung auch durch ein Mikroprozessor-System möglich ist.

(Aus dem "fuba-Spiegel" 2/79)

STÖRUNG 10 Rainchläge einen Feruncherfahrene

Schräge Streifen auf dem Bildschirm?

1. Schräge Streifen auf dem Bildschirm?

Bilder haben Ooppelkonturen.

Weniger Alkohol, mehr Milch trinken.

Zum Bild lehlt der Ton. Ein Stummfilm Jahrgang 1921 wird gesendet.

Sie haben keinen Emplang.
Nachsehen, ob Sie überhaupt ein Fernsehgerät besitzen.
Kein Bild, aber Ton.

Sie sitzen vor der Rückseite des Gerätes.
Kein Bild, kein Ton, aber eingeschaltet.
Der Netzstecker ist herausgefallen.

Kein Bild, aber sehr guter Ton.
Sie hören Radio.
Bild dreht sich, aber keine Musik.

Sie blicken in das Fenster der Waschmaschine.

Sie sehen nur Schnee.

Es ist Winter.

Das Programm ist schlecht.

Ihr Apparat ist in Ordnung.

Anregung zum Nachbau

Meßbrücke zum Ermitteln des Stromverstärkungsfaktors

Herrmann Schreiber, Orsay (Frankreich)

Sollen aus einem Los Transistoren einige herausgesucht werden, die den Stromverstärkungsfaktor gleichen haben, dann muß die Messung mit konstantem Basisstrom erfolgen. denn unterschiedliche Eingangswiderstände würden sonst das Meßergebnis verfälschen. Kleinsignal-Transistoren benötigen aber manchmal nur Basisströme im nA-Bereich, und dann ist das Konstanthalten nicht einfach, Bei Leistungs-Transistoren gibt es dieses Problem zwar nicht, doch hat man hier mit hohen Verlustleistungen zu kämpfen, die ein umständliches Hantieren mit Kühlkörpern bedeuten. Alle diese Schwierigkeiten hat der Autor mit seinen beiden Schaltungsvorschlägen gemeistert, so daß Stromverstärkungsfaktoren zwischen 10 und 10000 bei Kollektorströmen von 10 µA bis 10 A kein Rätselraten aufgeben.

Da ein Nachmessen von Transistoren in der Praxis selten notwendig ist, stellt eine Meßbrücke mit Handbedienung einen guten Kompromiß zwischen Aufwand und Bedienkomfort dar. Die Anzeige erfolgt bei den hier beschriebenen Ausführungen für Kleinsignal- und Leistungs-Transistoren mit zwei Leuchtdioden, die bei abgeglichener

Brücke gleichzeitig leuchten und bei verstimmter Brücke anzeigen, in welche Richtung das Abgleichpotentiometer zum Abgleich verstellt werden muß.

Im Prinzip ganzeinfach

Die Vergleichsschaltung in Bild 1 läßt die Leuchtdiode LD1 aufleuchten, wenn die Spannung am Eingang A höher ist als die Referenzspannung am Eingang B. Im umgekehrten Falle leuchtet LD2, und bei Spannungsgleichheit an den Eingängen leuchten beide LEDs. Bei Spannungsgleichheit ist die Brücke $(R_{\rm A}, R_{\rm B}, R_{\rm L}, T_{\rm x})$ abgeglichen, und die am Prüfling $T_{\rm x}$ liegende Spannung $U_{\rm CE}$ vom Teilerverhältnis der Brückenwiderstände abhängig

$$U_{\text{CE}} = U_{\text{CC}} \cdot \frac{R_{\text{B}}}{R_{\text{A}} + R_{\text{B}}}$$

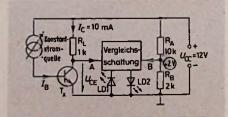
Der beim Brückenabgleich fließende Kollektorstrom

$$I_{\rm C} = (U_{\rm CC} - U_{\rm CE}) R_{\rm L}$$

ist damit ebenfalls von den Daten des Prüflings unabhängig und kann durch $R_{\rm L}$ in weiten Grenzen verändert werden. In der Schaltung nach Bild 1 ist beim Abgleich $U_{\rm CE}=2$ V und $I_{\rm C}=10$ mA. Hat nun der zum Abgleich führende Basisstrom $I_{\rm R}$ zum Beispiel einen Wert von

 $80\,\mu\text{A}$ dann ist die Stromverstärkung des Prüflings

$$B = \frac{I_{\rm c}}{I_{\rm B}} = 125$$


Ist das zur Einstellung von $I_{\rm B}$ dienende Potentiometer in Werten der Stromverstärkung geeicht; so kann der Wert 125 unmittelbar von seiner Skala abgelesen werden. Das Potentiometer steuert eine Konstantstromquelle, deren Strom $I_{\rm B}$ unabhängig vom Eingangswiderstand des Prüflings ist.

Die Schaltung für Kleinsignal-Transistoren

Eine Messung von B = 1000 bei $I_C =$ 10 μA bedeutet einen Basisstrom von 10 nA. Das Konstanthalten so geringer Ströme ist bei Verwendung von Bifet-Operationsverstärkern durchaus noch möglich. In der Schaltung nach Bild 2 wurde ein Doppelverstärker dieser Art benutzt; A1 dient als Konstantstromquelle, A2 als Vergleichsschaltung. Mit und durch Umschalten der Widerstandskombination R5, R7 kann IR zwischen 10 nA und 10 mA eingestellt werden. Der bei I_B = 10 mA zusätzlich in R5, R7 auftretende Querstrom übersteigt die Leistungsfähigkeit von A1, dem deshalb der Transistor T1 nachgeschaltet wurde. Dabei dient C1 zur Frequenzkompensation.

Das Abgleichpotentiometer P1 wurde mit R1...R4 beschaltet, damit sich der in Bild 3 dargestellte, etwa logarithmische Skalenverlauf einstellt. Die Umschaltung von R5 und R7 erfolgt so, daß die gerade wirksamen Widerstände dieser Kombination immer den gleichen Wert haben. Der maximale Basisstrom je Meßbereich fließt, wenn auf der Skala von P1 die Zahl "10" (Bild 3) eingestellt wird. Zum Eichen der Skala stellt man für die Widerstände R5 und

Bild 1. Grundschaltung der Meßbrücke. Bei Brückennull leuchten die LEDs gleichzeitig. Die Werte von $U_{\rm EC}$ und $I_{\rm C}$ sind dann allein von den Brückenwiderständen abhängig, und wegen der Ansteuerung über eine Konstantstromquelle bleibt die Messung vom Eingangswiderstand des Prüflings $T_{\rm x}$ unbeeinflußt

R7 den Wert 1 k Ω ein, und mißt ohne Einsetzen eines Prüflings den Basisstrom $I_{\rm B}$ durch Anschluß eines Milliampermeters an die Basis- und Emitterklemme des $T_{\rm x}$ -Sockels. Bei verschiedenen Stellungen von P1 berechnet man dann $B=I_{\rm C}/I_{\rm B}$, indem man $I_{\rm C}=10$ mA annimmt.

Die Meßgenauigkeit hängt von der Genauigkeit der für R5, R7 und R10 verwendeten Widerstände ab. In der Praxis genügen 5-%-Widerstände, da genauere Messungen schon wegen der Temperaturdrift des Stromverstärkungsfaktors illusorisch sind. Die Abgleichgenauigkeit ist jedoch ausreichend hoch, und der Abgleich kann sogar etwas kritisch werden, wenn man nicht die Referenzspannung über einen kleinen Abgleichbereich schwanken läßt. Dazu wird ihr über R9 und C2 eine dem Netzteil entnommene Wechselspannung überlagert.

Zur Polaritätswahl (NPN und PNP) genügt ein einfacher Umschalter, der auch die Anzeigedioden LD1 und LD2 immer so vorspannt, daß, bei ihrer Anordnung beiderseits von P1, die zum Abgleich führende Drehrichtung durch die jeweils aufleuchtende Diode angezeigt wird.

Die Speisequelle (2 x 12 V) hat einen Maximalstrom von knapp 150 mA zu liefern. Ihr Spannungswert beeinflußt die Meßgenauigkeit, eine Ausregelung

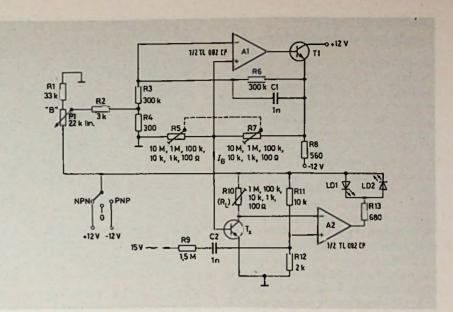


Bild 2. Schaltung zum Bestimmen der Stromverstärkung bei Kleinsignal-Transistoren. Der Konstantstrom von A1 wird von T1 verstärkt. Die Vergleichsschaltung arbeitet mit A2

auf 5% dürfte jedoch genügen.

Für die Bereichsumschaltung zeigt Bild 4 die Verdrahtung der Widerstände, die zu R5 und R6 gehören. Über den Stufenschalter kann dann der Meßbereich für die verschiedenen Kollektorströme gewählt werden. Sollen auch Darlington-Transistoren gemessen werden,

dann sind die in Tabelle 1 angegebenen Widerstände einzusetzen. Überlastungsgefahr besteht nur, wenn Kleinstleistungs-Transistoren (< 300 mW) längere Zeit im Bereich $I_{\rm C}=$ 100 mA betrieben werden. Kurzschlüsse an den $T_{\rm x}$ -Klemmen sind für das Gerät gefahrlos.

COMBICONTROL I

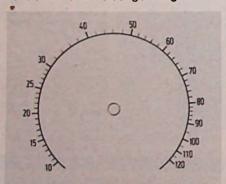
Typ: 733 CC, 5-BAND, endlich ist er da, der Superempfänger im Taschenformat, der sämtliche für den Funkexperten interessanten Frequenzen überwachen kann. Wie z. B. CB, TV 1, LPB, FM, AIR, HPB, WB, mit 2-m-Band und Satellitenband.
CB: 263 bis 27,4 MHz, Kanal 1 bis 40, LPB-TV 1: 54 bis 88 MHz, FM: 88 bis 108 MHz, AIB mit Satellitenband: 108 bis 140 MHz, HPB, WB, 2-m-Band: 140 bis 176 MHz, Squelch (Rauschaperre), 12 Transistoren, 8 Dioden, 2 Varistoren, 13 Band-filter, 4 Batterlen UM-3, Buchse für 220-f6-V-Netzgerät, Ohrhörer. Maße: 95×200×50 mm, Gew.: 570 g.

Gew.: 570 g.

Prels: 136,— DM
(Ausland: 120,35 DM).
Nachnahme. Bei Vorauskasse 140,— DM per
Scheck oder bar, spesenfreie Zusendung im Inund Ausland. 6 Monate
Garantle, ohne FTZ-Nr.,
nur für den Export.
Interessante Rabatte für
Wiederverkäufer und
Auslandsvertretungen.

RUBACH-ELECTRONIC-HAMBURG

2000 Hamburg 19 · Postfach 7693 · Telefon 040/8 50 53 59


Die Schaltung für Leistungs-Transistoren

Mit dem beschriebenen Verfahren würde bei $I_{\rm C}$ = 10 A allein in $R_{\rm L}$ eine Verlustleistung von 100 W auftreten. Daher wird eine Impulsschaltung vorgeschlagen, bei der der Transistor jeweils etwa 1 ms betrieben wird, dann aber 30 ms abgeschaltet bleibt. Man vermeidet so nicht nur unnötigen Leistungsverbrauch, sondern auch das umständliche Aufschrauben des Prüflings auf einen Kühlkörper. Selbst im ungünstigsten Fall beträgt die Verlustleistung im Prüfling nur 1,2 W ($I_{\rm C}$ = 10 A) und die in $R_{\rm L}$ kann 3,6 W nicht übersteigen.

Das Steuersignal mit einem Tastverhältnis von etwa 30 wird mit der in Bild 5 oben dargestellten Multivibratorschaltung (A1) erzeugt. Mit ihm wird die Konstantstromquelle wechselweise 1 ms ein-und dann 30 ms ausgeschaltet. Als Schalter arbeitet der Feldeffekt-Transistor T1. Die völlig symmetrische Struktur dieses Transistors ermöglicht ein Vertauschen der Drain- und Source-Anschlüsse ohne Änderung der Kennwerte. Mit T1 können somit positi-Signale genausogut geschaltet werden wie negative; das vereinfacht die NPN/PNP-Umschaltung erheblich. Da für In Impulsströme bis 1 A vorgesehen wurden, ist am Ausgang von A2 eine Stromverstärkung vorgesehen, die bei positiven Basisströmen mit T2-T4, bei negativen mit T3-T5 erfolgt. Der Impulsbetrieb sorgt dafür, daß diese Transistoren noch ohne Kühlkörperauskommen.

Obwohl impulsförmig, kann I_B noch als "Konstantstrom" bezeichnet werden, da ihn Verstärker A2 bei jeder Aufta-

Bild 3. Wer sich den genauen Abgleich sparen möchte, kann diese Skala für P1 ausschneiden. Der beinahe logarithmische Verlauf ermöglicht eine hohe Ablesegenauigkeit

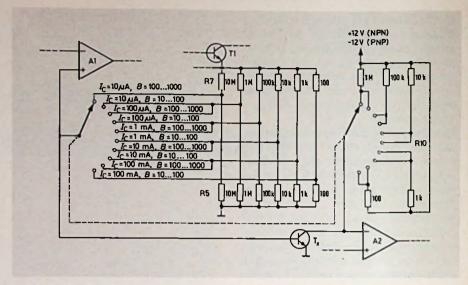
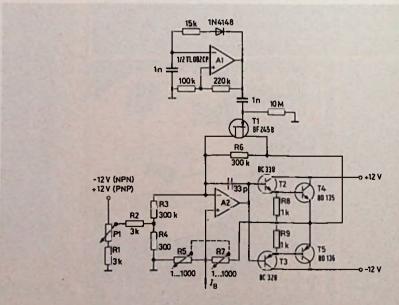



Bild 4. So ist die Widerstandkombination R5-R7 geschaltet. Sollen auch Darlington-Transistoren gemessen werden, dann sind die Widerstände aus Tabelle 1 zu verwenden.

stung so regelt, daß sein Wert vom Eingangswiderstand des Prüflings unabhängig bleibt. Wie in Bild 2, kann $I_{\rm B}$ mit P1 eingestellt und mit R5-R7 umgeschaltet werden. Bei zusätzlicher Umschaltung des Lastwiderstandes von $T_{\rm x}$ ergeben sich die in Tabelle 2 aufgeführten Möglichkeiten zur Bereichsumschaltung.

Der Lastwiderstand ist in der Anzeigeschaltung (Bild 6) mit R10 bezeichnet. Der daran auftretende impulsförmige Spannungsabfall ist erst dann für den Vergleich mit der Bezugsspannung geeignet, wenn vorher ein Speichern des Impulsspitzenwertes vorgenommen wird. Dazu dienen die Dioden D1 und D2 sowie der Speicherkondensator C3, dessen Wert so bemessen wurde, daß eine gewisse Welligkeit erhalten bleibt. Sie ersetzt die, in der Schaltung nach Bild 2 noch zusätzlich notwendige Wechselspannung. Zur Kompensation der Schwellspannung von D1 und D2 wurde die Referenzspannung am Pluseingang von A3 auf 2,7 V erhöht, so daß die Spannung $U_{\rm CE}$ bei Brückennull nach wie vor den Wert 2V hat.

Bild 5. Schaltung zum Bestimmen der Stromverstärkung bei Leistungs-Transistoren. Die Impulssteuerung mit A1 sorgt für eine niedrige Verlustleistung

Meß- bereich	J _c	R5=R7	R10
B=1000 bis 10000*	100 µA 1 mA 10 mA 100 mA	1 M 100 k	100k 10k 1k 100Ω

*Für Darlington-Transistoren

Tabelle 1. Für die Widerstandskombination R5-R7 und für R10 sind diese Werte einzusetzen, wenn Darlington-Transistoren zu messen sind

Tabelle 2. Die Werte für die Widerstanskombination R5–R7 und für R10 bestimmen die Meßbereiche

Meß- bereich	J _c [A]	R5=R7 [Ω]	R10 [Ω]
B=10bis 100	1 2 5 6,7 10	10 5 2 1,5	10 5 2 1,5
B=100bis 1000	1 2 5 6,7 10	100 50 20 15 10	10 5 2 1,5 1
B=1000bis 10000*	1 2 5 6,7 10	1000 500 200 150 100	10 5 2 1,5 1

^{*}Für Darlington-Transistoren

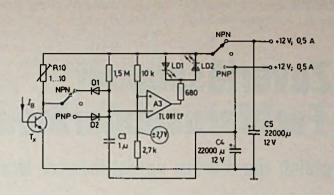


Bild 6. Anzeigeteil der Schaltung aus Bild 5. Die impulsförmige Spannung lädt einen Kondensator auf, so daß ihr Spitzenwert mit der Referenzspannung verglichen wird

Auf Grund des Impulsbetriebes genügt es, das Netzteil für eine Stromabgabe von 0,5 A auszulegen. Es ist dann jedoch nötig, C4 und C5 so zu bemessen, daß bei einer Entnahme von 10 A während 1 ms, die in diesen Kondensatoren gespeicherte Energie nicht zu stark abnimmt. Bei $C4 = C5 = 22000 \ \mu F$ ist diese Bedingung erfüllt.

Aus Zwei mach Eins

Es ist nicht möglich, die Schaltungen in den Bildern 5 und 6 auch zur Messung von Kleinleistungs-Transistoren zu verwenden, indem man für R5, R7 und R10 die Werte aus Bild 2 einsetzt. Da diese Werte 1 M Ω und mehr betragen

können, würden sie, zusammen mit den Eigenkapazitäten der Operationsverstärker und denen von T_{x} , erhebliche Impulsverschleifungen ergeben. Zwar ist es möglich die Schaltungen in den Bildern 5 und 6 durch Umschalter mit der in Bild 2 zu verbinden, doch ist dieser Weg ziemlich aufwendig. Einfacher ist es P1 sowie R1, R2 und R4 nur einmal für beide Kreise vorzusehen, indem man R3 aus Bild 2 auf Punkt A in Bild 5 führt. Das ergibt einen einfachen Aufbau, ohne Umschaltung zwischen den Meßkreisen. In Betrieb ist immer der Kreis, in dessen T,-Fassung ein Transistor eingesetzt wird. Beim Abgleich genügt es dann, das zugehörige Leuchtdiodenpaarzu beobachten.

fallquote λ zusammengestellt. außerdem werden die Werte λ_{\min} und λ_{\max} für die Vertrauensgrenzen 95% und 5% angegeben. Bei der Berechnung der Vertrauensgrenzen wurde die für Freiheitsgrade $v \ge 30$ gültige Näherung für das p-te Perzentil der χ^2 -Verteilung benutzt [6]:

$$\chi^2 = \frac{1}{2} (z_p + \sqrt{2\nu-1})^2$$

mit v = 2n + 2

Darin ist $z_{\rm p}$ das p-te Perzentil der Standard-Normalverteilung. Der Kehrwert der Ausfallquote λ kann im vorliegenden Fall nur mit gewissem Vorbehalt als MTBF bezeichnet werden, da er nicht klein gegenüber der mittleren Betriebsdauer ist. Da aber die MTBF einen anschaulicheren Eindruck von der Zuverlässigkeit vermittelt, als die Ausfallquoten selbst, wurden ihre Werte unter Berücksichtigung der jährlichen Betriebsdauer von 1200 Stunden berechnet und ebenfalls in Tabelle 3 eingetragen.

Die Werte der Ausfallquote und MTBF in Tabelle 3 zeigen bereits Unterschiede in der Zuverlässigkeit der Geräte der einzelnen Hersteller. Noch besser erkennt man diese Unterschiede in Bild 1, in dem die MTBF mit dem 90%-Vertrauensbereich dargestellt ist. Die Geräte von Hersteller B heben sich mit einer um rd. 87% höheren MTBF deutlich von den anderen untersuchten Geräten ab. Berücksichtigt man das Ensemble von Hersteller B nicht, erhält man eine durchschnittliche MTBF von 1,78 Jahren. Dieser Wert entspricht ungefähr der MTBF der Geräte von Hersteller A. Die Unterschiede der MTBF der Geräte der beiden anderen Hersteller betragen in diesem Fall nur noch +6% und -6%. Diese Unterschiede sind nicht so gravierend, zumal sich die Vertrauensbereiche überlappen.

Die Zuverlässigkeit gegenüber Erstausfällen

Im vorigen Abschnitt wurde zur Vereinfachung eine Exponentialverteilung der Ausfallereignisse angenommen. Dadurch ließ sich die Zuverlässigkeit der Geräte mit einem einzigen Parameter beschreiben. Dies ist die Ausfallrate λ oder ihr Schätzwert, die Ausfallquote λ , die über die gesamte Lebensdauer

konstant ist. In Wirklichkeit ist aber die Ausfallrate eines technischen Produktes nur in bestimmten Lebensabschnitten annähernd konstant. Bei komplizierten elektronischen Geräten, wie Farbfernsehgeräten, mit einer großen Zahl verschiedenartiger Bauelemente können diese Abschnitte sehr kurz im Vergleich mit der gesamten Lebensdauer der Geräte sein. Man muß sowohl mit einer Abnahme der Ausfallrate in der Einlaufphase, als auch mit einer Zunahme der Ausfallrate bei höherem Lebensalter rechnen (Verschleiß). Au-Berdem kann die Ausfallrate in jedem beliebigen Lebensabschnitt durch den vorzeitigen Ausfall eines oder mehrerer Bauelemente aufgrund von Konstruktions- oder Materialfehlern ansteigen. Das Auftreten solcher Ausfälle ist wiederum statistisch und kann den Wert der Ausfallquote - wie sie im vorigen Abschnitt berechnet wurde - stark beeinflussen. Eine Schwachstelle in der Geräte-Konzeption läßt sich gut identifizieren, wenn der Lebensabschnitt, in dem sich die Ausfälle ereignen, kurz ist gegenüber dem gesamten Lebensalter der Geräte. In dem entsprechenden Lebensabschnitt steigt dann die Ausfallquote sprunghaft an.

Zum Auffinden derartiger Schwachstellen hat es sich bei der benutzten Art der Datenspeicherung als günstig erwiesen, zunächst die Zuverlässigkeitsfunktion R (t) zu berechnen. Aus der Steigung der Zuverlässigkeitsfunktion kann später die Ausfallquote berechnet werden.

Die Zuverlässigkeitsfunktion muß aus der Zahl und dem Zeitpunkt der Ausfallereignisse ermittelt werden. Man teilt dazu das gesamte Lebensalter in Klassen gleicher Dauer ein. Der Wert der Zuverlässigkeitsfunktion in einer Klasse ist dann der Prozentsatz der Geräte, die dieses Lebensalter ohne Ausfall erreicht haben. Die Dauer einer Klasse muß einmal so lang sein, daß sich statistische Schwankungen der Zuverlässigkeit durch zu kleine Ensemble weitgehend herausmitteln, jedoch Schwankungen der Zuverlässigkeit, die zum Beispiel durch die vorher erwähnten Schwachstellen der Geräte verursacht werden, jedoch noch an Unstetigkeiten der Zuverlässigkeitsfunktion erkannt werden können. In Bild 2a sind zur Übersicht die Zuverlässigkeitsfunktionen R, (t) für Erstausfälle der Geräte der einzelnen Hersteller im einfachlogarithmischem Maßstab dargestellt. Dieser Maßstab hat gegenüber der linearen Darstellung den Vorteil, daß man sofort erkennen kann, ob und in welchen Lebensabschnitten die Zuverlässigkeitsfunktion exponentiell verläuft, daß heißt, die Ausfallquote konstantist

Bild 2 wurde nach Computer-Ausdrucken gezeichnet, die eine Einteilung in maximal 100 Klassen ermöglichten. Bei der Darstellung, die das maximale Lebensalter der Geräte erfassen soll (Bild 2a) haben die Klassen somit eine Dauer von 20 Tagen. Allerdings erlaubt diese grobe Klasseneinteilung und die Drängung durch den logarithmischen Maßstab bei Werten der Zuverlässigkeitsfunktion in der Nähe von 1 keine genaue Beurteilung der Zuverlässigkeit im frühen Lebensalter. Deshalb wurden in Bild 2b die Zuverlässigkeitsfunktionen R, (t) bis zum Lebensalter von 400 Tagen in linearem Maßstab dargestellt. Die Klassen haben dort eine Dauer von 4 Tagen.

Aus der Steigung der Kurven in Bild 2 läßt sich bereits eine qualitative Aussage für die Ausfallquote der Geräte der einzelnen Hersteller treffen.

Hersteller A: Man kann drei Zeitabschnitte erkennen, in denen die Ausfallquote einigermaßen konstant ist. Im ersten Abschnitt bis zu einem Lebensalter von 600 Tagen ist die Ausfallquote höher als im zweiten Zeitabschnitt von 600 Tagen bis 1 300 Tagen. Im dritten Zeitabschnitt oberhalb 1 300 Tagen ist die Ausfallquote wieder größer und liegt über dem Wert im ersten Zeitabschnitt.

Hersteller B: Hier sind nur zwei Zeitabschnitte erkennbar. Im ersten Zeitabschnitt bis zu 800 Tagen ist die Ausfallquote konstant und hat einen niedrigeren Wert als bei Hersteller A. Im zweiten Abschnitt steigt die Ausfallquote stetig an und liegt bei 1500 Tagen beträchtlich höher als bei Hersteller A.

Hersteller C: Auch hier lassen sich nur zwei Zeitabschnitte erkennen. Im ersten Zeitabschnitt bis zu 1200 Tagen ist die Ausfallqote konstant und hat einen höheren Wert als die der Hersteller A und B in diesem Bereich. Im zweiten Zeitabschnitt steigt die Ausfallquote wie bei Hersteller Bstark an.

Hersteller D: Wie bei Hersteller A hat die Zuverlässigkeitsfunktion drei markante Zeitabschnitte. Der erste Zeitabschnitt ist kürzer als bei Hersteller A. Er reicht bis zum Lebensalter von rd. 400 Tagen. Die Ausfallquote in diesem Bereich entspricht der im ersten Bereich von Hersteller C. Im zweiten Bereich von 400 Tagen bis 700 Tagen ist die

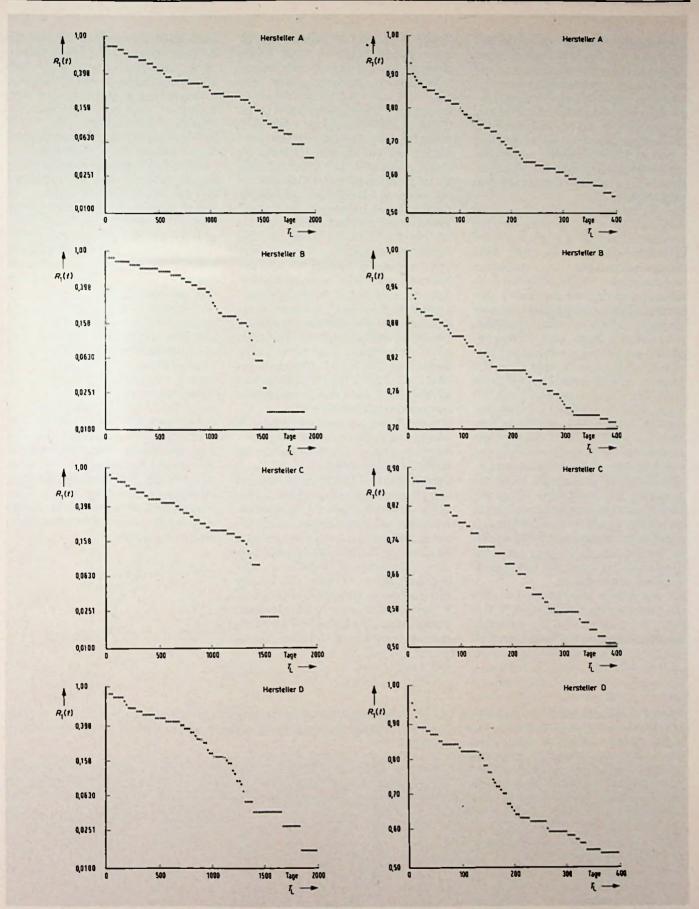


Bild 2. Zuverlässigkeitsfunktion R_1 (t) für Erstausfälle der Geräte der einzelnen Hersteller, a) (links) für ein Lebensalter T_L von maximal 2000 Tagen im einfach-logarithmischen Maßstab, b) (rechts) bis zum Lebensalter T_L von 400 Tagen im linearen Maßstab

Ausfallquote niedriger. Im dritten Bereich von 700 Tagen bis 1500 Tagen hat sie einen höheren Wert als im ersten Bereich, und einen starken Einbruch bei 1200 Tagen. Wodurch dieser Einbruch und die Einbrüche im Verlauf der anderen Zuverlässigkeitsfunktionen entstehen, wird in einer späteren Arbeit zu klären versucht, in der über die Untersuchung der ausgefallenen Baugruppen und die Ausfallursachen berichtet wird.

Um den Vergleich der Zuverlässigkeit zwischen den einzelnen Herstellern zu erleichtern, wurden zu verschiedenen markanten Zeitpunkten die Ausfallsummenhäufigkeit A, berechnet und zusammen mit der mittleren Ausfallsummenhäufigkeit der Geräte aller Hersteller A-D und der Standardabweichung oin Tabelle 4 zusammengestellt. Als markante Zeitpunkte wurden folgende Lebensalter gewählt: etwa 1 Monat $(T_L = 40 \text{ Tage})$, ½ Jahr $(T_L = 180)$ Tage), 1 Jahr (T_L = 360 Tage), 2 Jahre (T_L = 750 Tage), 3 Jahre (T_L = 1100 Tage), 4 Jahre ($T_L = 1500$ Tage) und soweit sie von den Geräten erreicht werden $T_{\rm L}$ = 2000 Tage. In der gleichen Spalte wie die Ausfallsummenhäufigkeit A, ist ihre relative Abweichung ΔA , vom Mittelwert angegeben, damit der Vergleich erleichtert wird. Hinter der Standardabweichung σ ist außerdem die relative Abweichung vom Mittelwert angegeben. Man erkennt, daß die größte Streuung zwischen den einzelnen Herstellern bis zu einem Lebensalter von zwei Jahren auftritt.

Mit den Werten aus Tabelle 4 wurden die Ausfallsummenverteilungen F_1 (t) in Bild 3 gezeichnet. Die Ausfallsummenverteilung der Geräte der Her-

steller A, C und D verläuft bis zu einem Lebensalter von 1000 Tagen oberhalb der gemittelten Ausfallsummenverteilung. Während diese Tendenz bei den Ausfallsummenverteilungen der Geräte der Hersteller C und D bei höherem Lebensalter erhalten bleibt, verläuft die Ausfallsummenverteilung der Geräte von Hersteller A beim Lebensalter über 1000 Tage unterhalb der gemittelten Ausfallsummenverteilung. Die Zuverlässigkeit der Geräte dieses Herstellers wächst mit steigendem Lebensalter und ist größer als die aller anderen Hersteller. Die Ausfallsummenverteilung der Geräte von Hersteller B verläuft bis zum Lebensalter von 1000 Tagen weit unterhalb der gemittelten Ausfallsummenverteilung. Das heißt, in dieser Zeitspanne sind die Geräte zuverlässiger als die aller anderen Hersteller, Bei einem Lebensalter über 1000 Tagen ändert sich dies jedoch. Beim Lebensalter von 1500 Tagen sind bereits 97,9% aller Geräte dieses Herstellers zum ersten Malausgefallen.

Um die Zuverlässigkeit der Geräte in den ersten Tagen nach der Inbetriebnahme zu prüfen, wurden in Bild 2b die Ausfallsummenhäufigkeit A, bis zum Lebensalter von 40 Tagen im Abstand von 4 Tagen abgelesen und mit den relativen Abweichungen A A, vom Mittelwert, dem Mittelwert selbst, den Standardabweichungen und der relativen Abweichung der Standardabweichung vom Mittelwert in Tabelle 5 eingetragen. Mit den Werten von Tabelle 5 wurde die Ausfallsummenverteilung F, (t) in Bild 4 gezeichnet. Bei allen Herstellern ist die Ausfalldichte bis zu einem Lebensalter von 40 Tagen bedeutend größer als im späteren Lebensalter. Das läßt darauf schließen, daß entweder die Ausgangskontrolle im Herstellerwerk schlecht ist oder aber die Einbrenndauer im Herstellerwerk nicht ausreicht. Bei der angenommenen jährlichen Betriebsdauer von 1200 Stunden beträgt die mittlere tägliche Betriebsdauer etwa 3 Stunden. Ein 24-Stunden-Test beim Hersteller entspricht also einem Betrieb von 8 Tagen im Feld. Wenn, wie die vorliegenden Zahlen zeigen, sich der größte Teil der Frühausfälle aber bis zu einem Lebensalter von 8 Tagen ereignet, dann ist der vorher geäußerte Schluß naheliegend. In Bild 4 sind die Ausfallsummenverteilungen F_1 (t) der einzelnen Hersteller und die gemittelten Ausfallsummenverteilungen im frühen Lebensalter anhand der Werte von Tabelle 4 gezeichnet. Hier werden der starke Anstieg der Ausfallsummenhäufigkeit bis zu einem Lebensalter von 16 Tagen und die Unterschiede zwischen den einzelnen Herstellern besonders deutlich.

Im letzten Teil dieses Abschnittes soll die Abhängigkeit der Ausfallquote für Erstausfälle der einzelnen Ensemble vom Lebensalter vorgeführt werden. Wie bereits festgestellt wurde, ist die Ausfallquote die Steigung der logarithmierten Zuverlässigkeitsfunktion. Sie kann aus den Kurvenzügen von Bild 2a in den einzelnen Lebensabschnitten bestimmt werden:

$$z(t) = -\frac{\mathrm{d}}{\mathrm{d}t} \ln R(t) =$$

$$= -\frac{1}{\log e} \cdot \frac{d}{dt} \log R(t) \approx$$

Tabelle 4. Ausfallsummenhäufigkeit A der Geräte der einzelnen Hersteller mit der relativen Abweichung ΔA_1 von der mittleren Ausfallsummenhäufigkeit der Geräte aller Hersteller, die Standardabweichung σ und die relative Abweichung der Standardabweichung von der mittleren Ausfallsummenhäufigkeit.

T _L /Tage	4	0	18	80	30	60	75	50	110	00	150	00	200	00
Hersteller	A ₁	ΔA ₁ %	A ₁ %	ΔA ₁	A ₁ %	ΔA ₁ %	A ₁ %	ΔA ₁	A ₁ %	ΔA ₁ %	A ₁ %	ΔA ₁	A ₁	ΔA ₁
A	14.7	+12,0	29,9	+ 9,0	42,7	+ 4,3	68,1	+ 9,9	76,8	-3,5	87,0	-7,2	96,0	-1,3
В	10.9	-17,0	20,1	-26,8	28,3	-31,0	49,6	-20,0	79,5	0,0	94,4	+0,7	-	
C	14,1	+ 7.4	29,4	+ 7,1	46,7	+1.4,0	67,3	+ 8,6	79,3	-0,3	97,9	+4,4	-	
D	12,8	- 2,5	30,4	+10,8	46,1	+12,6	62,8	+14,0	82,7	+3,9	95,8	+2,2	98,6	+1,3
A-D	13,13	5283	27,45		40,95		61,95		79,58		93,78		97,30	
O	1,68	12,8	4,92	18,0	8,62	21,00	8,56	13,80	2,42	3,00	4,74	5,10	1,84	1,8

T _L /Tage	4	1		3	1	2	1	6	2	0	2	24	2	8	3	2	3	6	4	0
Hersteller	A 1	ΔΑ,	A 1	ΔΑ,	A,	ΔΑ,	A 1	ΔΑ,	A	ΔΑ,	A 1	ΔA,	At	ΔA ₁	A,	ΔΑ,	A	ΔΑ,	A 1	ΔA,
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Α	7,2	+ 0,7	9,9	+10,3	11,2	+10,9	12,5	+10,1	13,2	+14,5	13,2	+13,3	13,8	+16,9	14,5	+13,5	14,6	+14.1	14.7	+12
В												-12,4								
C												+ 9,0								
D	4,2	-41,3	6,3	-29,8	8,4	-16,8	10,5	- 7,5	10,5	- 8,9	10,5	- 9,9	10,5	-11,0	11,7	- 8;4	11,7	- 8.6	12.8	- 2.
A-D	7,15		8,97	BORF	10,1		11,35		11,53		11,65		11,80		12,78		12,8		13.13	
σ	3,03	42,3	2,93	32,7	2,23	22,0	1,48	13,1	1,69	14.7	1,52	13,0	1,74	14.7	1.81	14.1	1.84	14.4	1.68	12.

Tabelle 5. Ausfallsummenhäufigkeit A_1 der Geräte der einzelnen Hersteller im frühen Lebensalter. Die relative Abweichung ΔA_1 von der mittleren Ausfallsummenhäufigkeit der Geräte aller Hersteller, die Standardabweichung σ und die relative Abweichung der Standardabweichung von der mittleren Ausfallsummenhäufigkeit

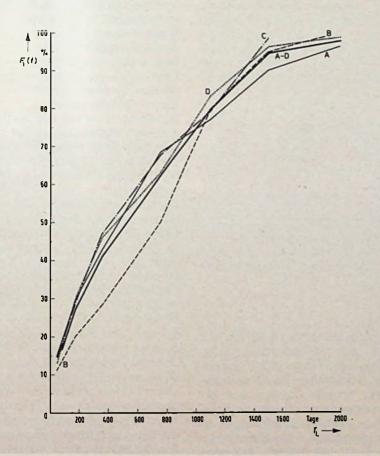


Bild 3. Ausfallsummenverteilung F_1 (t) für den Erstausfall der Geräte für das gesamte Lebensalter

$$\approx -\frac{1}{\log e} \cdot \frac{\log R_{n-1}(t) - \log R_{n}(t)}{t_{n} - t_{n-1}} = \hat{z}(t)$$

Die Dauer der einzelnen Lebensabschnitte wurde so gewählt, daß die Ausfallquote niemals Null wird. Sie sind im frühen Lebensalter kürzer als im höheren Lebensalter. Als Lebensabschnitte wurden gewählt: die Zeit von der ersten Inbetriebnahme bis zu einem Lebensalter von 4 Tagen, von 4 Tagen bis zu 8 Tagen, von 8 Tagen bis zu 40 Tagen usw. Die Werte der Ausfallquote der Geräte aller Hersteller,

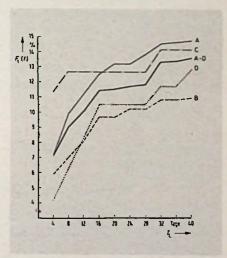


Bild 4. Ausfallsummenverteilung F_1 (t) für Erstausfälle im frühen Lebensalter

die relative Abweichung der Geräte der einzelnen Hersteller von der mittleren Ausfallquote sowie die Standardabweichung sind in Tabelle 6 zusammengestellt. Bild 5 zeigt den zeitlichen Verlauf der Ausfallquoten. Die hohe Zahl von Ausfällen in den ersten Lebenstagen wurde bereits im vorigen Absatz diskutiert. Der Bereich, in dem bei den Herstellern die Ausfallquote nahezu konstant ist, reicht von einem Lebensalter von 40 Tagen bis zu einem Lebensalter von 750 Tagen (rd. 2 Jahre) bzw. 1100 Tagen (rd. 3 Jahre). Es ist bequem, die Ausfälle, die sich in diesen Zeitabschnitten ereignen, als Zufallsausfälle zu bezeichnen. Gezielte Untersuchungen der Ausfallursachen könnten klären, in welchem Bereich eine konstante Ausfallquote durch Überlagerung später Frühausfälle und verfrühter Verchleißausfälle zu erwar-

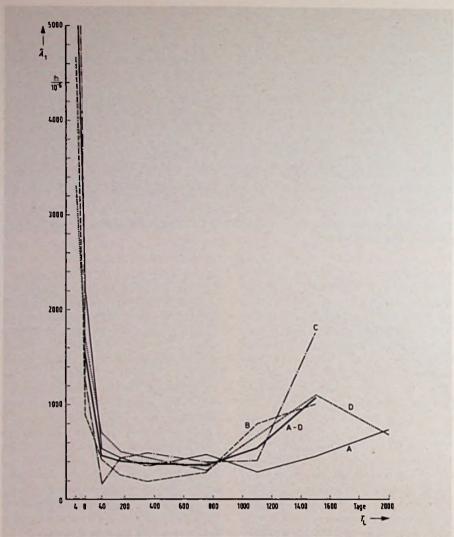


Bild 5. Ausfallquote $\bar{\lambda}_1$ aufgrund von Erstausfällen in Abhängigkeit vom Lebensalter T_i

ten ist. Die Ausfallquote der Geräte steigt je nach Hersteller bei einem Lebensalter von über 800 bzw. 1100 Tagen wieder an. Bei den Geräten der Hersteller B und C ist dieser Anstieg steiler als bei den Geräten der Hersteller A und D. Daß der hohe Anstieg der Ausfallquote für Erstausfälle nicht unbedingt eine hohe Gesamt-Ausfallquote bedingt, sieht man beim Vergleich der Werte in Tabelle 3. Hersteller B hat die niedrigste Gesamt-Ausfallquote.

Die Zuverlässigkeit unter Berücksichtigung aller Ausfälle

Nach einem Ausfall werden die Geräte umgehend repariert und wieder in Betrieb genommen. Da die Reparaturzeit in den meisten Fällen kurz ist gegenüber der gesamten Betriebsdauer, wird sie in den vorliegenden Untersuchungsergebnissen nicht berücksichtigt. Beim zweiten Ausfall und allen Ausfällen höherer Ordnung muß geprüft werden, ob sie von allen vorangegangenen Ausfällen statistisch unabhängig sind. Diese Prüfung ist strenggenommen nicht möglich. Allerdings kann man, wenn auch mit einer gewissen Unsicherheit, durch logische Schlußfolgerungen hierüber entscheiden.

Besteht eine solche Abhängigkeit, wird von Fall zu Fall entschieden, ob der spätere Ausfall gewertet werden soll. Der Ausfall wird nicht gewertet, wenn bei der vorangegangenen Reparatur der Service-Techniker den Fehler nicht richtig erkannt oder nicht einwandfrei beseitigt hat oder der Ausfall auftrat, weil beim vorangegangenen Ausfall ein

Bauelement eindeutig überlastet wurde und deshalb kurze Zeit später einen weiteren Ausfall verursachte. Der Ausfall wird gewertet, wenn das Konzept des Gerätes oder der Baugruppe sowie die zugehörigen Service-Unterlagen nicht die Möglichkeit boten, die Fehler mit tragbarem Aufwand zu erkennen oder der spätere Ausfall lange Zeit nach dem vorangegangenen erfolgte.

Die Zuverlässigkeitsdaten der einzelnen Ausfälle höherer Ordnung sind meist weniger wichtig, können aber im Prinzip wie die Zuverlässigkeitsdaten des ersten Ausfalls berechnet werden. Interessiert man sich für die Wahrscheinlichkeit, mit der sich zwei oder mehr Ausfälle in Abhängigkeit vom Lebensalter ereignen, kann man durch Verknüpfung der Ausfallhäufigkeitsverteilungen f_1 (t) bis f_n (t) der einzelnen Ausfälle über Faltungsintegrale die Ausfallsummenverteilung F_n (t) berechnen [6]. Von weit größerem Interesse ist jedoch die Zuverlässigkeit von Geräten, die bereits einmal oder mehrmals ausgefallen waren.

Zur Berechnung der entsprechenden Zuverlässigkeitsdaten werden die Geräte nach jeder Reparatur willkürlich als neu in Betrieb genommen betrachtet. Die erste Inbetriebnahme zählt als nullte Reparatur. Die Zeit nach einer Reparatur entspricht bei diesem Verfahren nicht mehr dem wahren Lebensalter und wird daher künftig Betriebsalter genannt und mit T_B bezeichnet. Nur nach der nullten Reparatur sind Lebensalter und Betriebsalter identisch. Die bei höherem Lebensalter wachsende Zahl von Ausfällen, die ein Ansteigen der Ausfallrate zur Folge hatte (Bild 5), verschiebt sich jetzt zwangsläufig zu einem niedrigeren Betriebsalter. Die Zeit bis zu einem solchen Ausfall ist um so kürzer, je länger die Zeit von der ersten Inbetriebnahme bis zum vorangegangenen Ausfall war. Da man damit rechnen kann, daß sich diese Ausfälle wiederum statistisch über einen gro-Ben Betriebsabschnitt verteilen, werden die neuen Ausfallquoten 2 (t) in Abhängigkeit vom Betriebsalter im mittleren Zeitbereich oberhalb der Ausfallquote 2, (t) für entsprechende Lebensalterverlaufen.

In Bild 6a sind die Zuverlässigkeitsfunktionen R (t) der Geräte der einzelnen Hersteller bis zu einem Betriebsalter $T_{\rm B}$ von 2000 Tagen im einfach logarithmischen Maßstab dargestellt.

Bei den Geräten von Hersteller A lassen sich wie bei den Erstausfällen (Bild 2a) drei Zeitabschnitte erkennen, die jedoch nicht mehr so stark hervortreten. Der erste Zeitabschnitt geht bis zu einem Betriebsalter von rd. 500 Tagen, der zweite bis zu einem Betriebsalter von rd. 1 300 Tagen. Beim Vergleich der Werte von Bild 6a und Bild 2a erkennt man, daß die Kurve in jedem Zeitbereich unterhalb der Zuverlässigkeitsfunktion R, (t) verläuft.

Bei den Geräten von Hersteller B entspricht der prinzipielle Kurvenverlauf dem der Zuverlässigkeitsfunktion R_1 (t). Entgegen den vorausgegangenen Überlegungen verläuft die Zuverlässigkeitsfunktion R_1 (t) aber oberhalb der Zuverlässigkeitsfunktion R_1 (t). Die Geräte von Hersteller B nehmen damit eine Sonderstellung ein. In Tabelle 2 kann man nachlesen, daß nur bei Hersteller B die Zahl der Geräte größer ist als die Zahl der Ausfälle. Da aber einmal die Ausfallquote λ_1 in den ersten Lebenstagen sehr groß war (Bild 5) und bereits bei einem Lebensalter von

1500 Tagen rd. 98% aller Geräte, die dieses Betriebsalter erreicht haben, ausgefallen waren (Tabelle 4), verbleiben nur wenige Möglichkeiten für weitere Ausfälle. Andererseits wird aber die Gesamtzahl der Geräte um die Zahl der wieder in Betrieb genommenen reparierten Geräte erhöht. Damit fällt automatisch die Ausfallquote, wenn sich nur wenige weitere Ausfälle ereignen. Die reparierten Geräte erreichen ein höheres Betriebsalter als nach der ersten Inbetriebnahme, wie auch später noch gezeigt wird.

Bei den Geräten von Hersteller C hat die Zuverlässigkeitsfunktion R(t) bis zu einem Betriebsalter von 1000 Tagen fast den gleichen Verlauf wie die Zuverlässigkeitsfunktion $R_1(t)$, fällt dann jedoch noch steiler als diese ab.

Bei den Geräten von Hersteller D verläuft die Zuverlässigkeitsfunktion R (t) bis zu einem Betriebsalter von 1100 Tagen angenähert linear, jedoch sind die vergleichbaren Werte niedriger als bei der Zuverlässigkeitsfunktion R_1 (t). Beim Betriebsalter von über 1 100 Tagenfällt R (t) noch steiler ab als R, (t).

In Bild 6b sind die Zuverlässigkeitsfunktionen R (t) für die Geräte der einzelnen Hersteller in linearem Maßstab bis zu einem Betriebsalter von 400 Tagen in Klassen von 4 Tagen Dauer dargestellt. In diesem Maßstab ist eine bessere Beurteilung der Zuverlässigkeit in frühem Betriebsalter möglich. Der Wert der Zuverlässigkeitsfunktion nach einem Betriebsalter bis zu 4 Tagen ist für die Hersteller A, B und C gleich und bei allen größer als beim ersten Ausfall. Bei den Geräten von Hersteller D liegt der Wert der Zuverlässigkeitsfunktion bis zu einem Betriebsalter von rd. 20 Tagen über den Werten der anderen Hersteller und ebenfalls über den entsprechenden eigenen Werten der Zuverlässigkeitsfunktion $R_{1}(t)$.

Um den Vergleich der Zuverlässigkeit zwischen den einzelnen Herstellern zu

Tabelle 6: Ausfallquote $\hat{\lambda}_1$ der einzelnen Hersteller und aller Hersteller für Erstausfälle von der ersten Inbetriebsnahme bis zu einem Lebensalter von 4 Tagen, von 4 Tagen bis zu 8 Tagen usw., mit der Abweichung $\Delta\hat{\lambda}_1$ von der Ausfallquote der Geräte aller Hersteller, die Standardabweichung σ und die relative Abweichung der Standardabweichung von der Ausfallquote der Geräte aller Hersteller

∆T _L /Tage	0-	4	5 -	8	8-	40	41 –	180	181 -	- 360	361 -	- 750	751 -	1100	1101 -	1500	1501 -	2000
Hersteller	٨٠h	Δλ	λ·h	Δλ	Ì∙h	Δλ	Ž·h	Δλ										
	10-6	%	10-8	%	10-8	%	10-6	%	10-6	%	10-6	%	10-6	%	10-6	%	10-6	%
	3445,5																	-20,9
В	3501,3	+17,2	551,4	-28,5	396,1	-31,9	262,2	-42,1	277,8	-42,6	339,6	-28,9	755,3	+34,3	1048,9	-11,1	-	-
	3780,5																	-
D	1226,5	-59,0	745,5	- 3,4	850,5	+46,2	667,2	+47,4	576,1	+19,0	494,6	+ 3,6	634,3	+12,8	1083,8	-14,1	1168,5	+20,9
	2988,5	100	771,5		581,8		452,6		484,1		477,5		562,6		1179,6		966,3	
σ	1183,7	39,6	374,8	48,6	209,3	36,0	180,2	39,8	138,7	28,7	101,9	21,4	161,7	28,7	613,4	52,0	285,9	29,6

Tabelle 7. Ausfallsummenhäufigkeit A der Geräte der einzelnen Hersteller mit der relativen Abweichung Δ A von der Ausfallsummenhäufigkeit der Geräte aller Hersteller, die Standardabweichung σ und die relative Abweichung der Standardabweichung von der mittleren Ausfallsummenhäufigkeit für das gesamte Lebensalter

T _B /Tage	4	0	18	80	36	30	75	50	110	00	15	500	20	00
Hersteller	A	ΔΑ	A	ΔΑ	A	ΔΑ	A	ΔΑ	A	ΔΑ	A	ΔΑ	A	ΔΑ
	%	%	%	%	%	%	%	%	%	%	%	%	%	%
A	12,2	+16,5	31,1	+14,9	50,3	+12,4	73,5	+ 5,7	83,4	-1,1	92,5	-3,5	97,9	-0,8
В	9,1	-13,1	19,4	-28,3	31,3	-30,1	55,8	19,8	81,5	-3,4	95,3	-0,6	-	-
C	9,7	- 7,4	23,3	-13,9	44,0	- 1,7	73,6	+ 5,8	84,3	0,0	98,9	+3,1	1-1	-
D	10,9	+ 4,1	34,5	+27,4	53,4	+19,3	75,3	+ 8,3	88,1	+4,5	96,9	+1,0	99,5	+0,8
A-D	10,47	128	27,7	CHEST R	44,75		69,55		84,33		95,9		98,7	
σ	1,37	13,1	6,94	25,6	9,78	21,9	9,2	13,2	2,77	3,3	2,7	2,8	1,13	

ter durch den Einfluß der Erstausfälle zwar geringer, die Geräte erreichen aber trotzdem ein höheres Betriebsalter als vor der ersten Reparatur. Die Geräte von Hersteller A haben bei höherem Betriebsalter die größte Zuverlässigkeit. Die Kurve der Ausfallsummenverteilung der Geräte von Hersteller C verläuft nahe der Kurve für die Geräte aller Hersteller. Im hohen Betriebsalter haben die Geräte von Hersteller C jedoch – wie bereits erwähnt wurde – eine schlechtere Zuverlässigkeit als die Geräte der anderen Hersteller.

Die Zuverlässigkeit der Geräte bis zu einem Betriebsalter von 40 Tagen kann mit Hilfe von Tabelle 8 beurteilt werden. Wie bei der vorangegangenen Betrachtung des gesamten Betriebsalters wurden zusätzliche Daten berechnet und ebenfalls in Tabelle 8 eingetragen. In Bild 8 sind die Ausfallsummenverteilung F (t) der einzelnen Hersteller bis zu einem Betriebsalter von 40 Tagen gezeichnet. Das unterschiedliche Verhalten der Geräte der einzelnen Hersteller ist deutlich zu erkennen. Die Geräte von Hersteller A zeigen bereits bei diesem Betriebsalter die geringe Zuverlässigkeit, die bis zum Betriebsalter von rd. 1000 Tagen anhält. Die Zuverlässigkeit der Geräte von Hersteller D ist bis zu einem Betriebsalter von 28 Tagen größer als bei den Geräten aller anderen Hersteller. Dieses günstige Verhalten ändert sich beim Betriebsalter von mehr als 100 Tagen, wie bereits bei Bild 7 erläutert wurde.

Zum Abschluß soll – wie bei der Betrachtung der Erstausfälle – die Abhängigkeit der Ausfallquote λ der einzelnen Ensemble vom Betriebsalter untersucht werden. Um den Vergleich der

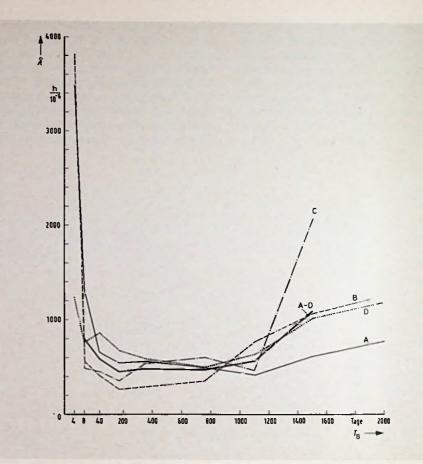


Bild 9. Ausfallquote λ unter Berücksichtigung aller Ausfälle in Abhängigkeit vom Lebensalter $T_{\rm B}$

berechneten Werte mit den Werten in Tabelle 6 zu erleichtern, wurden die gleichen Zeitabschnitte gewählt. Die berechneten Werte sind in Tabelle 9 eingetragen. Hinter jedem Wert steht die Abweichung von der mittleren Ausfallquote der Geräte aller Hersteller zur Verdeutlichung der Unterschiede. Bild

9 zeigt den zeitlichen Verlauf. In den ersten Tagen nach einer Reparatur hat die Ausfallquote bei allen Herstellern den höchsten Wert. Dies beruht einmal auf dem Einfluß der Frühausfälle bei der ersten Inbetriebabnahme, auf dem Frühausfall der neu eingesetzten Bauelemente oder Baugruppen, auf Feh-

Tabelle 9. Ausfallquote $\hat{\lambda}$ der einzelnen Hersteller und aller Hersteller (A–D) für alle Ausfälle von der ersten Inbetriebnahme bis zu einem Lebensalter von 4 Tagen, von 4 Tagen bis zu 8 Tagen usw., mit der Abweichung $\Delta\hat{\lambda}$ von der Ausfallquote der Geräte aller Hersteller, die Standardabweichung σ und die relative Standardabweichung von der Ausfallquote der Geräte aller Hersteller

∆T _L /Tage	0-4	5-8	9 – 40	41 – 180	181 – 360	361 – 750	751 – 1100	1101-1500	1501-2000
Hersteller	$\bar{\lambda}_1 \cdot h \Delta \bar{\lambda}_1$	$\hat{\lambda}_1 \cdot h \Delta \hat{\lambda}_1$	$\bar{\lambda}_1 \cdot h \Delta \bar{\lambda}_1$	$\lambda_1 \cdot h \Delta \lambda_1$	$\lambda_1 \cdot h \Delta \lambda_1$				
133 T	10-6 %				10-6 %				
A	5714,9 + 0,7	2187,1 +46,4	520,2 +18,4	428,1 + 8,1	338,5 - 5,0	456,7 +30,4	277,2 -47,7	443,1 +58,2	721,3 +3,8
					182,8 -48,7				
C	9092,5 +60,1	1218,1 -18,5	153,6 -65,0	427,0 + 7,8	473,8 +33,0	380,8 + 8,7	396,1 -25,3	1731,0 +63,3	112
					430,3 +20,8				
A-D	5677,6	1494,0	439,2	396,1	356,4	350,4	530,1	1059,8	694,8 (A+D)
σ	2486,0 43,8	570,4 38,2	221,2 50,3	109,8 17,7	128,7 36,1	85,0 24,3	233,7 44,1	528,3 49,9	37,5 5,4

lern, die bei der vorangegangenen Reparatur nicht erkannt werden konnten und daher nicht beseitigt wurden, und auf Fehlern, die durch mangelhafte Reparatur verursacht wurden. Die verschiedenen Ausfallursachen und Zusammenhänge sind Thema eines nachfolgenden Beitrages.

Bei den Geräten von Hersteller D liegt die Ausfallquote in den ersten Tagen nach einer Reparatur bedeutend niedriger als bei allen anderen Herstellern. Das Schaltungskonzept dieser Geräte erlaubt eine sichere Fehlerdiagnose. Außerdem haben gezielte Untersuchungen der Ausfallursachen ergeben, daß bei Hersteller C rd. 35% aller Ausfälle durch Fehler im Netzteil und rd: 15% aller Ausfälie in den Farbendverstärkern verursacht wurden. Diese Fehler können leicht repariert werden, da zum Beispiel keine thermischen Effekte mitspielen. Allerdings sind gerade diese Fehler für die hohe Ausfallquote im gesamten Betriebszeitraum verantwortlich. Bei allen Herstellern erreichen die Ausfallquoten bei einem Betriebsalter von rd. 40 Tagen die Werte, die bis zu einem Betriebsalter von 1100 Tagen angenähert konstant bleiben. Die Ausfallquote der Geräte von Hersteller C steigt nach 1100 Tagen stark an, die Ausfallquote der Geräte des Herstellers A nur wenig. Auch die Ausfallquoten der Geräte der anderen Hersteller steigen bei einem Betriebsalter von mehr als 1100 Tagen. Die Geräte von Hersteller A haben bei hohem Betriebsalter die niedrigste Ausfallquote. Die Ausfallquoten der Geräte der Hersteller B und D sind im Betriebsalter über 1 100 Tage fast gleich.

Literatur

- [1] Blasberg, H.J., Güldner, W: Das Ausfallverhalten von Fernsehgeräten. Qualität und Zuverlässigkeit 21 (1976) Nr. 11, S. 245 bis 248.
- [2] Messerschmitt-Bölkow-Blohm GmbH: Technische Zuverlässigkeit. Springer-Verlag (1977), S. 92 und 93.
- [3] Blasberg, H.J., Güldner, W.: Der Einfluß der Technologie der aktiven Bauelemente auf das Ausfallverhalten von Fernsehgeräten. Fernseh- und Kino-Technik 32 (1978) Nr. 1.
- [4] Tölle, W.: Probleme der Zuverlässigkeit bei elektronischen Konsumgütern. VDI-Berichte 237 (1975) S. 99-107.
- [5] Frank, B.: Die Teleskop-Zuschauerforschung. Aufbau, Ausbau und Ergebnisse. Media Persp. (1976)

Zusammenfassung

Mit Hilfe der Ausfallquoten (Gild 5 und Bild 9) werden die wichtigsten Ergebnisse der Untersuchungen zusammenfassend diskutiert.

Die hohen Werte der Ausfallquoten in den ersten Lebenstagen zeigen, daß das Einbrennen der Geräte vor Auslieferung an den endgültigen Benutzer keineswegs sinnlos ist. Daß dieses Einbrennen im Herstellerwerk zu kurzzeitig ist oder nicht genügend sorgfältig erfolgt, zeigt der steile Abfall der Ausfallquote, die bei einem Lebensalter von 40 Tagen bereits den Wert erreicht, der bis zu einem Lebensalter von rd. 1000 Tagen nahezu konstant bleibt. Ein Einbrennen bedeutet keine merkbare Verkürzung der gesamten Lebenserwartung, da die Einbrenndauer kurz gegenüber der gesamten Lebensdauerist.

Die Kosten für die Beseitigung der Frühausfälle müssen zum großen Teil vom Fachhandel getragen werden [8]. Solange dies der Fall ist, bleibt zu überlegen, ob dieser das Einbrennen vor Auslieferung der Geräte nachholen soll, um sich Kosten zu sparen. Dies ist besonders bei neuen Serien empfehlenswert, falls der Kunde nicht auf einer ungeöffneten Verpackung besteht.

Auch nach erfolgter Reparatur kann ein längerer Probelauf nützlich sein, wenn man die hohen Werte der Ausfallquote in Bild 9 berücksichtigt. Ein solcher Probelauf ist unbedingt erforderlich, wenn Fehler beseitigt wurden, die vorher schwer zu identifizieren oder zu lokalisieren waren. Die Darstellung der Ausfallquote ohne den ersten Ausfall würde die Verhältnisse besser durchschaubar machen. Im übrigen muß man sich darüber im klaren sein, daß sich bei allen Reparaturen die Fähigkeit des

Service-Technikers stark in der Ausfallquote bemerkbar macht.

Besondere Beachtung muß den Ausfallquoten im Zeitabschnitt von 40 bis 1 100 Tagen geschenkt werden. Sie sind bei allen Herstellern in diesem Zeitabschnitt nahezu konstant. Die Zuverlässigkeit kann also hier mit einer einfachen Exponentialfunktion beschrieben werden. Die Werte der Ausfallquote bei den einzelnen Herstellern entsprechen weitgehend den bereits in Tabelle 3 angegebenen Werten.

Demgegenüber muß der Wiederanstieg der Ausfallquote beim Lebensalter über 1100 Tage mit Vorsicht interpretiert werden. Wie bereits im ersten Abschnitt gesagt wurde, steht nicht für jeden Lebensabschnitt die gleiche Anzahl von Geräten zur Verfügung, Da der Bestand an Geräten laufend durch neu in Betrieb genommene Geräte erhöht wird, gibt es zwangsläufig weniger Geräte mit hohem Lebensalter. Der Ausfall eines Gerätes mit hohem Lebensalter wirkt sich daher stärker auf die berechnete Ausfallquote aus als der Ausfall eines Gerätes mit geringem Lebensalter. In einer früheren Arbeit des Verfassers [9] konnte der Wiederanstieg der Ausfallquote noch nicht festgestellt werden, da die Geräte zum damaligen Zeitpunkt (Mitte 1978) nur ein maximales Lebensalter von 40 Monaten, das heißt 1200 Tagen erreicht hatten. Beim Vergleich der damals berechneten Werte der Ausfallquoten mit den nun vorliegenden Werten (mittlerer Wert aller Hersteller) im mittleren Lebensabschnitt stellt man gute Übereinstimmung fest. Die in dieser Arbeit berechneten Werte der MTBF stimmen auch mit den Angaben eines Herstellers überein, die kürzlich veröffentlicht wurden [10].

Nr. 9, S. 401-423.

- [6] Spiegel, M.R.: Statistics. SCHAUM Publishing Co. New York (1961), S. 196
- [7] Görke, W.: Zuverlässigkeitsprobleme elektronischer Schaltungen. Bibliographisches Institut Mannheim, (1969) S. 66 ff.
- [8] Blasberg, H.J.: Statistische Auswertung der Ausfalldaten von transpor-
- tablen Fernsehgeräten. Fernseh- und Kino-Technik. 33 (1979) Nr. 8, S. 281-284.
- [9] Blasberg, H.J.: Vergleich der Zuverlässigkeit von Fernsehgeräten mit Röhren und Halbleitern. Funk-Technik, Bd. 33 (1978) Nr. 9, S. 79-84.
- [10] Tetzner, K.: Anmerkungen zur Funkausstellung 1979. Funkschau (1979) Nr. 17, S. 971.

Computer

Wo "künstliche" Intelligenz den Menschen übertreffen kann

Lichtschranken an Türen erfüllen eine logische Funktion: Sie verknüpfen die Feststellung, daß das Licht der Schranke unterbrochen wird, mit dem Befehl, die Tür zu öffnen. Daß kaum jemand in diesem Ablauf Intelligenz sieht, hängt nach Ansicht von Professor Günter Meyer-Brötz damit zusammen, daß Datenverarbeitungsmaschinen viel höherer "intelligenter" Leistungen fähig sind. Wie Meyer-Brötz auf einem Symposium zum 25jährigen Bestehen des Ulmer Forschungsinstituts der AEG-Telefunken angab, können Maschinen Tätigkeiten übernehmen, die auch insofern "intelligent" sind, als selbst der Mensch sie erlernen muß.

In den Anfängen der automatischen Zeichenerkennung war es noch nötig, Zahlen und Buchstaben für die Datenverarbeitung so zu zeichnen, daß sie einen Code enthielten, der beim Abstreichen erkannt wurde. In Zahlenreihen unter Euroschecks oder Überweisungsformularen der Banken liest die Maschine nicht die Zeichen selbst, sondern den in ihnen enthaltenen Code. Technisch ist das aber überholt. Computer, so Meyer-Brötz, können heute Schriftzeichen als solche lesen und richtig deuten. Der beste Beweis sind die Anschriftenleser der Deutschen Bundespost, deren erstes Exemplar seit September vergangenen Jahres in Wiesbaden arbeitet. Bei abgehender Post liest die in Ulm entwickelte Maschine den Bestimmungsort mit der Postleitzahl, bei ankommender Post Straße und Hausnummer. Bislang kann sie drei Viertel aller Postsendungen selbständig lesen. Sie versagt nur bei undeutlicher Handschrift.

Der Computer liest schneller als der Mensch

Trotz dieser Einschränkung sind solche Maschinen auf ihrem Gebiet, dem Lesen, allen Menschen überlegen. Moderne Belegleser, so Meyer-Brötz, lesen und sortieren in einer Stunde 100000 Belege mit etwa 5 Millionen Zeichen. Dabei unterläuft ihnen auf eine Million Zeichen weniger als ein Lesefehler.

Das eigentliche Problem des Entwurfs von Anschriftenlesern lag darin, daß sie die zu lesenden Zeichen gewissermaßen von ihren Schnörkeln befreien und normieren müssen, um sie trotz verschiedener Darstellung vergleichen oder unterscheiden zu können. Bei postalischen Lesern läßt sich Falschdeutungen auch vorbeugen, indem den Maschienen das Verzeichnis der Postorte und ihrer Postleitzahlen eingespeichert wird. Das erlaubt Kontrollen, weil die Maschine beim Vergleich des gelesenen mit dem gespeicherten Postort und dessen Postleitzahl Fehldeutungen einzelner Zeichen zu bereinigen vermag.

Nicht für alle Zwecke ist freilich ein hohes Tempo notwendig. Am unteren Ende der Skala rangieren Handleser, mit denen zum Beispiel an Kaufhauskassen Artikelbezeichnungen und Preise auf den Etiketten gelesen werden. Ihre Lesegeschwindigkeit liegt bei hundert Zeichen in der Sekunde. Das ist mit billigen Mikrocomputern leicht zu verarbeiten.

Die Erfahrung mit der Entwicklung von Anschriftenlesern läßt sich auch auf verwandten Gebieten anwenden. So kündigte Meyer-Brötz noch für dieses Jahr die Lieferung der ersten Prototyp-Lesegeräte für Blinde an: Die Geräte wandeln Druckschriften aller Art in die für Blinde lesbare Brailleschrift um. In der zweiten Generation, die Meyer-Brötz um 1983 erwartet, werden die Lesegeräte "sprechen", so daß Blinde sich Gedrucktes von den Maschinen vorlesen lassen können.

Ein Computer beurteilt Bilder

Auch der Krebsfrühdiagnose können spezialisierte Maschinen dieser Art dienen. Im Ulmer Forschungslabor läuft seit einiger Zeit die Entwicklung von Maschinen, die kranke und gesunde Zellen zumindest so weit unterscheiden, daß sie für den Laborarzt eine Vorauswahl treffen können. Die Maschine wertet vor allem Veränderungen in den Zellkernen aus, die ihr im mikroskopischen Bild vorgeführt werden. Die Proben werden dabei als unverdächtig oder als verdächtig eingestuft und im letzten Falle dem Laborarzt vorgelegt. Damit bewältigt die Maschine eine Aufgabe, die auch vom Menschen Intelligenz verlangt, zumal die Unterscheidung von kranken und gesunden Zellen eine längere Ausbildung und Übung voraussetzt. Erste Prototypen erwartet Meyer-Brötz für 1983. Sie werden kaum Arbeitsplätze vernichten können, da die zunehmende Bedeutung der Vorsorgemedizin schon in absehbarer Zeit dazu führen dürfte, daß die Menge der zu untersuchenden Proben ohne maschinelle Hilfe kaum noch zu bewältigen ist.

Bei der Spracherkennung versteht der Computer nur Worte seines Herrn

Wesentlich schwieriger ist das Erkennen des gesprochenen Wortes. Hier befindet sich die Elektronik in einem Stadium, das das Erkennen einer begrenzten Zahl von Wörtern erlaubt, sofern sie von Menschen gesprochen

Unser Fachbuchangebot für den Leser der FUNK-TECHNIK

Elektrotechnik Elektronik

Herbert Bernstein

Hochintegrierte Digitalschaltungen und Mikroprozessoren

1978. 568 Selten, 442 Abbildungen, 215 Tabellen, Kunststoff, DM 82,—. ISBN 3.7905-0272-3. Eine gut verständliche Einführung in die hochintegrierte Di-glialtechnik und Mikroprozessoriech-nik. Das Buch ist als Leitfaden zum Selbststudium aut geeignet.

Bergtold/Graff

Antennen-Handbuch

1977. 2. Auflage, völlig neu überarbel-tet und ergänzt von Dipl.-Ing. Erhard Graff, 336 Seiten mit 330 Abbildungen, Kunststoff-Einband, DM 44,—. ISBN 3-7905-0261-8. Das Buch ist auf die Bedürfnisse des Praktikers ausgerichtet und vermittelt möglichst unbeschwert von aller Mathematik und Theorie das, was er an Kenntnissen für seine täg liche Arbeit benötigt.

Bergtold/Elselt

Die große Elektrofibei

1979. 9., überarbeitete und erwelterte Auflage, aktualisiert von J. Eiselt. 430 Seiten, 497 Abbildungen, 100 Aufgaben mit Lösungen, Kunststoffeinband, DM 44.—. ISBN 3-7905-0293-6.

neu -

Seit Jahren hat sich "die große Elektrofibel" als ein hilfreiches Lern- und Nachschlagewerk für den Elektro-Praktiker bestens bewährt. Sie soll den ohne nennenswerte Vorkenntnisse, in die Elektrotechnik einführen. die hierzu gehörenden Begriffe erklaren und Zusammenhänge aufdecken.

Josef Fiselt

Fehlersuche in elektrischen Anlagen und Geräten

1976. 2., verbesserte Auflage. 128 Seiten mit 67 Abb., Balacron-Einband, DM 12,50. ISBN 3-7905-0243-X.

Enno Folkerts

Elektrotechnische Grundlagen für den Praktiker

1978, 124 Seiten, 77 Abbildungen, kartoniert, DM 16,80. ISBN 3-7905-0266-9. Dieser Band behandelt in kurzgefaßter und verständlicher Form viele Grundlagenfragen der Elektrotechnik. Dabei hat sich der Autor nicht allein auf Erklärungen beschränkt. Vielmehr wird der behandelte Stoff durch ausgesuchte Rechenbeispiele weiter verdeutlicht.

Benedikt Gruber

Elektronik studiert und probiert

1978. 4., verbesserte Auflage. 136 Seiten mit 129 Abbildungen, kartoniert, DM 17,80. ISBN 3-7905-0284-7. Die praktische Konzeption dieses Bandes führt den Lernenden relativ welt und zu-gleich problemlos in die Elektronik ein, Ausführlich werden Bauteile, Schaltungen und Berechnungen be-schrieben.

Benedikt Gruber

Oszilloskopieren leicht und nützlich

1975. 2., überarbeitete und ergänzte Auflage. 104 Seiten, 106 Abbildungen, Balacron, DM 12,50. ISBN 3-7905-0237-5.

Hasse/WiesInger

Handbuch für Biltzschutz und Erdung

1977. 160 Seiten, 94 Abbildungen, 20 Tabellen, Kunststoff, DM 29,80. ISBN 3-7905-0273-1. Dieses Handbuch beschreibt Ursachen und Entstehung der Blitzentladung und erläutert ausführ-lich die Möglichkeiten der gefahrlosen Die z. Z. gültigen Blitzschutzbestimmungen sind alle erfaßt. Horst Pelka

Digitaltechnik für Rundfunk- und Fernsehtechniker

1979, Ca. 150 Seiten mit zahlreichen Abbildungen, karloniert, ca. DM 19,80 (erscheint ca. November). ISBN 3-7905-0301-0. Beginnend mit der Begriffser-klärung der Digitaltechnik wird die Boolesche Algebra erklärt. Die unter-schiedlichen Verknüpfungen, positive und negative Logik, Schaltzeichen, Wahrheitstabellen, Logikfamilien, Kennzeichnung der Bausteine durch die verschiedenen Hersteller, bistablie Kippstufen, synchroner und asynchro-ner Betrieb, Zahlensysteme, Zähler, Schieberegister und Halbleiterspel-cher, A/D- und D/A-Wandler, digitale Modulationsverfahren und mehr wer-den besprochen. Mit einigen Experi-menten kann der Leser die Verbindung von der Theorie zur Praxis fin-den. Darüber hinaus werden viele praktische Anwendungen in der Unterhaltungselektronik gezeigt.

Werner Weber

ABC der Alarmtechnik

1979. Ca. 140 Seiten mit zahlreichen Abbildungen, kartoniert, ca. DM 19,80 (erscheint ca. November). ISBN 3-7905-0302-9. Das Buch erheilt die Anfänge der Alarmtechnik vor 25 Jahren und behandelt die Grundlagen moderner elektronischer Alarmanlagen. Ausführlich werden die heute gebräuchlichen Alarmauslöser vom einfachen Magnetschalter bis zur Radar-Richtstrecke beschrieben, ebenso Aufbau und Wir-kungsweise der Alarmzentralen, der Netz-/Notstromversorgungen und verschiedenartigen Alarmgeber. der Beispiele aus der Praxis erläutern den Aufbau kompletter Alarmsysteme für Private, Handel, Gewerbe und Indu-Die Schilderung von Ladendiebstahl-Alarmsystemen sowie modernster Zugangskontrollsysteme mit einem Ausblick auf künftige Entwicklungen und Trends runden dieses Standardbuch den gegenwärtigen Stand der Sicherheitstechnik ab.

Elektronik-Ausbildung + Fortbildung

HPI-Fachbuchreihe Elektronik Herausgeber Heinz-Piest-Institut für Handwerkstechnik an der Universität

Rolf Gräf/Josef Kammerer

Elektronik IV C - Mikrocomputer Aufbau, Anwendung, Programmlerung Lehrbuch

1979. 360 Seiten mit 94 Abbildungen und zahlreichen Tabellen. Kunststoff-einband, DM 48.—. ISBN 3-7905-0285-5. Die moderne Mikrocomputertechnik dringt zunehmend auch in Gebiete der klassischen Elektrotechnik vor. Zukünftig werden sich nicht mehr aus-schließlich Fachleute der elektronischen Datenverarbeitung und Computer-Spezialisten mit Mikroprozessoren bzw. Mikrocomputern auseinanderzusetzen haben, sondern auch Elektro-Installateure, Elektromechaniker, Elektromeister, Elektroingenieure und technische Vertriebsteute. Ihnen soll die-ses Buch eine Hilfe zur praxisorlentierten Weiterbildung bieten. Es bildet mit den Prüfungsaufgaben und Arbeits-blättern das Lehr- und Lernmaterial für den bundeseinheitlichen Fachlehrgang Elektronik IV C - Mikrocompudes Heinz-Plest-Instituts. Ebenso ist dieses Buch aber auch zum Selbststudium geeignet

Josef Kammerer / Peter Lamparter Hans-Jobst Sledler neu

Prüfungsaufgaben

1979. 312 Seiten mit 400 Prüfungsaufgaben, Kunststoffeinband, ca. DM 38,-

(erscheint ca. Oktober). ISBN 3-7905-0290-1. Nachdem der Leser das Lehr-Mikrocomputer durchgearbeitet hat, kann er anschließend seinen tat-sächlichen Wissensstand anhand der Prüfungsaufgaben kontrollieren und feststellen, wo noch Informationslük-ken bestehen. Der Band Prüfungsaufgaben beinhaltet eine Fülle Aufgaben und Fragen zur Programmierung und Funktion des Mikrocomputers EZ 80 (System 8080). Dabel wird in den Fragen und Aufgaben gleichwertig auf die Hardware und Software eingegangen. Entsprechend dem Niveau der ligen Prüfungsfragen werden für die richtige Beantwortung unterschiedlich viele Punkte angegeben.

Nach Intensiver Durcharbelt dieses Buches verfügt der Bearbeiter über fundierte Kenntnisse der Mikrocomputer-Hard- und Software.

Er ist dann imstande, dieses Wissen auch auf andere Computer-Systeme zu übertragen und besitzt somit wichtige Voraussetzungen für seinen späteren Arbeitsbereich in der Daten- und Informationsverarbeitung. neu

Arbeitsblätter

neu -

1979. Block à 150 Blatt mit 2fach-Lochung, geleimt m. Deckblatt. DM 12,-Anhand dieser Arbeitsblätter auf 12,dieser Arbeitsblätter soll Auszubildende die noch erforderliche Sicherheit in der Programmierung von Mikrocomputern dazugewinnen. Er kann mittels vorgedruckter Arbeits-blätter bellebige Programme in die Sprache des Mikrocomputers umsetzen. Für den Anwender und den Auszubildenden eine Hilfe, die sonst so trok-ken erscheinende Programmlerung wirkungsvoll und praktisch anzuwenden.

Hobby-Elektronik

Herbert Bernstein

IC-Hobby Band 1: Operationsverstärker und **CMOS-Schaltkreise**

1979. Ca. 176 Seiten mit ca. 110 Abbildungen, Kunststoffeinband, ca. 29,80 (erscheint ca. Oktober), ISBN 3-7905-0287-1. Ein einführendes Grundlagen-Kapitel behandelt die Berechnung und den Aufbau konventioneller Elektronik-Schaltungen. Dann wird zu den integrierten Operationsverstärkern übergegangen, Dabei werden viele Interessante (C-Chaltungen angeboten, die sich auch für den Profi-Bastler eignen. So werden komplette Meß- und Prüfgeräte für die spätere Arbeitspra-xis im Hobby-Labor angeboten. Besonderer Wert wurde außerdem auf eine ausführliche Beschreibung sämtlicher Schaltungsaufbauten gelegt. Auch ist der Leser nachher imstande, Schaltungen selbst zu entwerfen und zu

Herbert Bernstein

IC-Hobby Band 2: Hochintegrierte IC's der Analog- und Digitaltechnik

neu

1979. Ca. 220 Seiten mit etwa 150 Abbildungen, Kunststoffeinband, ca. DM 29,80 (erscheint ca. November). ISBN 3-7905-0304-5. Das Buch beinhaltet folgende Themen für den Elektronik-Hobbybereich: Spannungsregler, Festspannungsregier und geschaltete Netz-geräte; Zähler in MOS- und CMOS-Technologie bis 500 MHz; Spezial-

Operationsverstärker.

Das IC-Hobby Teil 2 ist eine Verbindung zwischen Theorie und Praxis, also eine Mischung zwischen Fach-buch und Bastelanleitung, Neben der Theorie sind erprobte Bauanleitungen

HiFi-Hobby Mono-, Stereo- und Quadrofonie

1975. 3. Auflage, neu bearbeitet und ergänzt von Winfried Knobloch. 224 Seiten, 185 Abbildungen, kartoniert, DM 24,80. ISBN 3-7905-0232-4. Ein echtes Praktiker-Buch für HiFi-Freunde, aber auch für Techniker in Handel, Handwerk und Industrie.

Werner W. Diefenbach

Tonband-Hobby

Heimtongeräte in der Praxis, Dia- und Schmalfilmvertonung, Heimstudio, Trick-aufnahmen. 1978. 12. Auflage. Überarbeitet, ergänzt und aktualisiert von Winfried Knobloch. 176 Seiten mit 165 Abbildungen, kartoniert, DM 22,-... ISBN 3-7905-0274-X. Das Buch berücksichtigt die letzten Fortschritte der Aufnahme- und Wiedergabetechnik einschließlich Nachhallerzeugung. Vertonen von Dia-Serien und Schmalfilmen, Tricktechnik mit Playback und Multi-playback sowie auch die Hi-Fi-Stereofonie. Wer danach arbeitet, hat mehr Freude an seinem Tonbandgerät oder Cassetten-Recorder.

Werner W Diefenhach

Elektronik-Hobby Erprobte Schaltungen, leicht nachzubauen

1976. 2. Auflage. Überarbeitet und aktualisiert von W. Knobloch. 228 Seiten mit 200 Abbildungen, Sklzzen sowie 8 Tabellen, kartoniert, DM 24,80. ISBN 3-7905-0247-2. Über fünfzig ausführliche Bauanleitungen. Anfänger wie auch Fortgeschrittene finden darin "ihre" Schallungen.

Werner W. Diefenbach

Handfunksprechgeräte in der Praxis

1977. 3. Auflage. Überarbeitet, ergänzt und aktualisiert von Winfried Knob-loch. 128 Seiten mit 90 Abbildungen, Konstruktionsplänen und Tabellen, Konstruktionsplänen und Tabellen, kartoniert, DM 24,80. ISBN 3-7905-0265-0. Eine aktualisierte Fassung des bekannten Titels mit detalllierten Ausführungen zum Thema Handfunksprechgeräte unter anderem auch über den "Jedermann"-(CB-)Funk.

Josef Eiselt

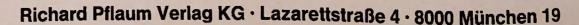
Funk-Hobby für Jedermann

1977. 176 Seiten mit 138 Abbildungen, 1977, 176 Seiten mit 138 Abbildungen, kartoniert, DM 22,80, ISBN 3-7905-0271-5. Dieses Buch beinhaltet alles, was der Hobby-Funker wissen muß und was darüber hinaus für ihn noch interessant ist. Mit einem Wort, dieses Buch ist ein komplettes Praktikum für den CB-Funker, das alle Din-ge, die mit diesem schönen Hobby in

Otmar Kilgenstein

Einführung in die Elektronik durch Experimente

1979. Ca. 150 Seiten mit ca. 60 Ab-bildungen, kartoniert, ca. DM 17,80 bildungen, kartoniert, ca. DM 17,80 (erscheint ca. Oktober). ISBN 3-7905-0296-0. Elektronik-Schaltungen einfach nachzubauen befriedigt viele nicht. Um nun auch zu erfahren, warum eine vorgegebene Schaltung manchmal nicht auf Anhieb funktioniert, wird das technische Verhalten von Bauteilen wie Transistoren, Thyristoren, Dioden, Zenerdioden anhand konkreter Versuchsaufbauten demonstriert.


Ein Grundlagen-Buch für den Elektronik-Anfänger mit einer Reihe von Experimentierbeispielen.

Nach dem Durcharbeiten dieses Buches ist der Leser in der Lage, Schaltungen zu verstehen, weil er weiß, worauf es

Im Buchhandel oder beim Verlag

Ausführliche Informationen über unseren Prospekt "Elektrotechnik/Elektronik 79/80". Bitte anfordernt

werden, deren Sprechbesonderheiten ihr eingespeichert sind. Dieses sehr begrenzte Vermögen genügt aber für eine Reihe praktischer Anwendungen. Eine davon wurde im Forschungsinstitut vorgeführt: Bei Abnahmeprüfungen und Qualitätskontrollen muß der Prüfer seine Befunde nur in ein umgehängtes Mikrofon sprechen und behält seine Hände frei. Die Maschine stellt aus den gesprochenen Bemerkungen das Prüfprotokoll zusammen. Voraussetzung dazu ist ein auf die Aufgabe bezogener Wortschatz von derzeit höchstens 200 Wörtern, die der jeweilige Prüfer der Maschine schon einmal vorgesprochen hat. Selbst in dieser einfachen Form kann die Maschine die Arbeit des Kontrolleurs erleichtern. Aus diesem Grunde besteht auch ein ausgesprochenes Interesse der Industrie an solchen Anlagen.

Die elektronische Technik wird es noch für längere Zeit bei dieser Worterkennung belassen. Dafür gibt es eine Reihe praktischer Anwendungen. so vielleicht auf Flughäfen die Weiterleitung aufgegebenen Gepäcks durch gesprochene Anweisung zu den jeweiligen Abflugpositionen. Ebenso Worterkennungsmaschinen können Verletzten und Behinderten, die ihrer Arme und Hände nicht bebrauchen können, eine wesentliche Hilfe sein. Maschinen, die auf gesprochene Anfragen gesprochene Antworten geben, vielleicht über Telefon, werden aber noch auf sich warten lassen. Gerade auf dem Gebiet der maschinellen Erkennung, so Meyer-Brötz, liegt das Lösbare oft unmittelbar neben dem Unlösbaren, und der Unterschied braucht oftmals nur winzig zu sein.

Walter Baier

O Die Chevron-Elemente sind nur noch halb so groß und halb so breit wie die üblicherweise benutzten; deshalb lassen sich viermal so viele in gleichen Bereichen unterbringen. Da die Zwischenräume von benachbarten Chevrons die gleichen geblieben sind, kann der Herstellungsprozeß im wesentlichen beibehalten werden.

O Spezielle Codier- und Decodierstationen wurden hinzugefügt, so daß zwei verschiedene Typen von Blasen gebildet und voneinander unterschieden werden können.

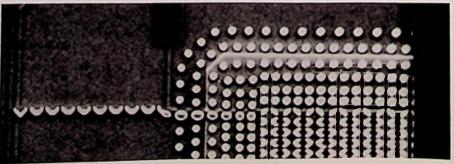
Der zweite Punkt ist für höhere Speicherkapazitäten entscheidend. Bisher übliche Blasenspeicher verwenden Blasen, die sich physikalisch nicht voneinander unterscheiden lassen. In diesen Speichern wird die Information durch das Vorhandensein oder Nichtvorhandensein einer Blase an einem bestimmten Speicherplatz dargestellt (jeder Arm eines Chevron-Elementes wird als Speicherplatz betrachtet).

Speichertechnik

Magnetblasen der zweiten Art

In Heft 11 der Funk-Technik berichteten wir über einen Magnetblasen-Speicher der Firma IBM mit dem eine Speicherdichte von 4 Millionen Bit keine Zukunftsmusik bleiben soll. IBM hat aber noch ein Eisen im Feuer: Einen Magnetblasen-Speicher gleicher Speicherdichte, der mit herkömmlichen Mitteln gefertigt werden kann. Voraussetzung dafür sind allerdings zwei Arten von Magnetblasen, anstelle der bisherigen einen Art.

Wie bei herkömmlichen Magnetblasen-Speichern bestehen die Muster auf der Oberfläche des Speichers aus Schleifen mikroskopisch feiner Permalloy-Elemente in Chevron-Gestalt. Die Magnetblasen bewegen sich unter den Chevron-Elementen von einem Chevron-Arm zum nächsten und bilden damit Ströme von kontinuierlich zirkulierenden Blasen.


Das sind die springenden Punkte

Das Design des neuen Speichers unterscheidet sich von konventionellen Speichern in zwei wichtigen Punkten:

Magnetblasen sind Einzelgänger

Wenn ein konventioneller Blasenspeicher mit Information geladen wird. bleiben die Plätze dort leer, wo "0" als Information steht. Diese verteilten Leerstellen in einem Blasenspeicher bedeuten ein erhebliches Einschränken der Speicherdichte. Da die zylindrischen Blasen sich gegenseitig abstoßen, müssen sie nämlich in einem Abstand von 4 bis 5 Blasendurchmessern auseinandergehalten werden, weil sie sich sonst gegenseitig in die leeren Plätze der Speicheranordnung drängen und damit die dort gespeicherten Informationen "O" zerstören würden.

Bild 1. Teilansicht des neuen Magnetblasen-Speichers. Das Speichergebiet mit den Chevrons ist durch 6 Reihen punktförmiger Elemente auf dem Chip abgegrenzt. Die einzelne Chevron-Reihe (links) ermöglicht den Zugang zur Decodier-Station (IBM)

Gekennzeichnete Blasen sind die Lösung

Ein Weg, um diese Beschränkung zu überwinden, ist die Verwendung von zwei unterschiedlichen Blasentypen. Dann kann die Information als Unterschied in den Blasen selbst und nicht durch die Anwesenheit oder Abwesenheit von Blasen dargestellt werden. Damit wird es möglich, die Information in einer dichtgepackten Anordnung unter Verzicht auf leere Plätze unterzubringen. Der Abstand der Blasen läßt sich bis auf zwei Blasendurchmesser verringern, die Informationsdichte wird vervierfacht.

Die zwei Magnetblasentypen unterscheiden sich durch die Struktur der die Blase umgebenden Domänenwand. Diese unterschiedlichen magnetischen Strukturen bewirken, daß die Blasen in einem inhomogenen Feld in verschiedenen Richtungen abgelenkt werden, wenn sie zur Decodierstation gelangen. Die "1"-Blase gelangt dann zum Detektor 1, die "0"-Blase zu einem anderen Detektor.

Was bisher erreicht wurde

Der Versuchsspeicher wurde auf einem dünnen magnetischen Film hergestellt, der die Elemente Yttrium, Samarium, Calcium und Germanium enthält. Der Speicher verfügt über alle Funktionen für das Lesen, Schreiben und Speichern von Daten. Tests haben gezeigt, daß die verschiedenen Zustände der Blasenwände unter normalen Arbeitsbedingungen völlig stabil sind.

Der Speicher verwendet Blasen mit einem Durchmesser von 2,7 μ m, und hat Abstände zwischen den Permalloy-Chevrons von 1,4 μ m. Die Herstellung erfolgt mit konventionellen lithographischen Techniken.

IBM-Forscher haben schon früher über die Herstellung einer Versuchsspeichers berichtet, der Wand-codierte Blasen in dichtgepackten Anordnungen -Gittern (lattices) - verwendete. In den früheren Experimenten wurde der Zugriff zu den Blasen durch das Anlegen von elektrischen Strom und nicht - wie im vorliegenden Fall - durch Magnetfelder gesteuert. Die Speicherdichte, die durch die im früheren Speicher verwendeten Techniken erreicht wurde, war genauso hoch wie bei dem neuen Speicher, doch war die Folge der Fabrikationsschritte in der früheren Lösung wesentlich komplexer.

Ihr Fachberater

Über 320 Seiten mit zahlreichen Tabellen, vielen technischen Daten und aktuellen Fachaufsätzen. Taschenbuchformat, flexibler Kunststoffeinband, DM 11,80 (Abo-Preis DM 9,50; siehe unter Vorzugspreis für Abonnenten) inkl. MwSt., zuzüglich Versandkosten.

Das "Jahrbuch der Unterhaltungselektronik 80" ist primär wieder ein aktuelles Hand- und Nachschlagewerk für die tägliche Praxis. Service-Techniker und Ingenieure der Unterhaltungsindustrie, des Handels und Handwerks, aber auch der technische Kaufmann finden in dem Taschenbuch Übersichtsaufsätze und Tabellen, in denen der Stand der Technik auf den wichtigsten Gebieten dokumentiert wird

In der Ausgabe 1980 werden folgende Themen behandelt:

Tonarm und Tonabnehmer: Durch die HiFi-Technik, besonders durch die Stereo-Technik, wurde und wird auch in den 80er Jahren die Schallplatte eine technisch und wirtschaftlich interessantes Gebiet der Unterhaltungselektronik. In der Bundesrepublik Deutschland allein wurden etwa 200 Miilionen Schallplatten produziert und verkauft. Eine ausgefeilte Wiedergabetechnik ist die Voraussetzung für die heute geforderte HiFi-Qualität. Der Beitrag, der von Mitarbeitern eines führenden Unternemens der deutschen Phonoindustrie verfaßt wurde, behandelt die verschiedenen Arten von Tonabnehmern, Eigenschaften des Tonarms, der Abtaststifte und Fragen der Lebensdauer von Schallplat-

Von der Diode zum Mikroprozessor, ein Übersichtsaufsatz des Herausgebers, geht auf weitere Möglichkeiten ein, wie der Mikroprozessor die Geräte der Unterhaltungselektronik weiter verbessern kann. In diesem Beitrag geht es um die Modernisierung der digitalen Abstimmung und Anzeige, die seit einigen Jahren unter Ausnutzung der elektronischen Abstimmung mit Dioden die analoge Abstimmung der Rundfunk- und Fernsehempfänger ersetzt. Es werden einige ganz neue Systeme beschrieben, die von Entwicklern für die 80er Jahre konzipiert wurden. Dieser Abschnitt ergänzt den im Jahrbuch 78 erschienenen Hauptbeitrag über den Einsatz der Mikroprozessoren in der Unterhaltungselektronik.

Die weiteren Kapitei. Wo ist was genormt.

Hiersind alle für die Unterhaltungselektronik wichtigen DIN-Normen alphabetisch geordnet zusammengestellt. Diese Übersicht enthält die für die Praxis wichtigen endgültigen Daten, d. h. also keine Vornormen oder Norm-Entwürfe.

Who is Who in der Unterhaltungselektronik.

Diese inzwischen recht beliebt gewordene Anschriftensammlung der leitenden technischen und kaufmännischen Persönlichkeiten wurde wieder entsprechend ergänzt und erweitert (soweit sie der Redaktion für diese Ausgabe mitgeteilt wurden).

Tabellen, die für das praktische Arbeiten wichtig sind, ergänzen den Inhalt dieses unentbehrlichen Taschenbuches.

Vorzugspreis für Abonnenten

Für unser Jahrbuch bieten wir einen Vorzugspreis an, wenn Sie zur Fortsetzung bestellen. Wir gewähren dann einen Preisnachlaß von 20% auf den jeweils gültigen normalen Verkaufspreis. Im Falle der Ausgabe 80 also statt DM 11,80/Abo-Preis DM 9,50 (zuzüglich Porto). Das Abo kann jährlich bis spätestens 30.6. für das folgende Jahr gekündigt werden.

Hüthig & Pflaum Verlag · München / Heidelberg

☐ Jahrbuch der U	Interhaltungselektronik 1980, DM 11,80.
☐ Jahrbuch der t	Interhaltungselektronik 1980, Abo-Preis D
Vor- und Zuname	
Straße	Plz/Ort
Suane	
Datum	Unterschrift

Bekanntgemachte Patentanmeldungen

Verfahren zur digitalen Codierung ei-Pal-FBAS-Signals. Patentanspruch: Verfahren zur digitalen Codierung eines Pal-FBAS-Signals, bei dem der gesamte Signalfrequenzbereich in den Leuchtdichtebereich von Null bis zur Frequenz f, und in den Farbträgerfrequenzbereich von f, bis zur Grenzfrequenz f aufgespalten wird und bei dem der Farbträgerfrequenzbereich f, bis f ohne Übergang in den Basisfrequenzbereich der den Farbträger modulierenden Chrominanzsignale in eine geeignete Frequenz umgesetzt wird, dadurch gekennzeichnet, daß die ver-Farbträgerfrequenz schobene ganzzahliges Vielfaches der Vollbildfrequenz ist und daß der umgesetzte Farbträgerfrequenzbereich mit Frequenzen abgetastet wird, die kleiner

DBP.-Anm. H 04 n, 9/32. AS 2803696 Bekanntgemacht am 26.7.1979

Anmelder: Institut für Rundfunktechnik GmbH, 8000 München

Erfinder: Dr.-Ing. Norbert Mayer, 8000 München

Anordnung zur teilbildfrequenten Korrektur von Verzerrungen des Bildes bei einem Farbfernsehempfänger. Patentanspruch: Anordnung zur teilbildfrequenten Korrektur von Verzerrungen des Bildes bei einem Farbfernsehempfänger, bei welchem die Horizontalablenkschaltung und die Hochspannungserzeugerschaltung voneinander getrennt sind, mit einer im Stromversorgungskreis der Horizontalablenkschaltung liegenden Spannungsversorgungsschaltung, wobei die Horizontalablenkschaltung so ausgeführt ist, daß die Amplitude des von ihr gelieferten Sägezahnstroms von der Spannungsversorgungsschaltung gelieferten Gleichspannung abhängt, und mit einer Anordnung, welche der von der Spannungsversorgungsschaltung gelieferten Gleichspannung eine von der Vertikalablenkschaltung abgenommene, sich mit der Teilbildfrequenz ändernde Korrekturspannung überlagert, dadurch gekennzeichnet, daß die Spannungsversorgungsschaltung als Spannungsregelschaltung ausgebildet ist, die an einem ersten Eingang eine ungeregelte Spannung empfängt,

an einem zweiten Eingang eine Bezugsspannung empfängt und eine von einem Gegenkopplungsausgang zu dritten Eingang führende Gegenkopplungsschleife aufweist, welche die Ausgangsspannung der Spannungsregelschaltung in Abhängigkeit von der dem zweiten Eingang zugeführten Bezugsspannung regelt. und daß eine Anordnung vorgesehen ist, die der Bezugsspannung zur Korrektur von Kissenverzerrungen eine sich mit der Teilbildfrequenz parabelförmig ändernde Korrekturspannung überlagert, deren Parabelscheitel in der Mitte des Teilbildes liegt.

DBP.-Anm. H 04 n, 3/22. AS 1762417 Bekanntgemacht am 2.8.1979

Anmelder: Societe Orega Electronique Mecanique, Vincennes, Val-de-Marne (Frankreich)

Erfinder: Louis Bathias, Vincennes (Frankreich)

Aus Kondensatoren und Dioden aufgebaute, vergossene Spannungsvervielfacherkaskade. Patentanspruch: Aus Kondensatoren und Dioden aufgebaute, vergossene Spannungsvervielfacherkaskade für die Zeilenablenkung in Fernsehgeräten, welche einen parallel zum Hochspannungsausgang geschalteten Lastwiderstand, einen sogenannten Bleeder, mit einem Abgriff für die Fokussierspannung enthält. wobei der Lastwiderstand in zumindest einen Festwiderstand und ein dazu in Serie geschaltetes Potentiometer aufgeteilt ist und wobei der Festwiderstand, nicht aber das Potentiometer, in die Vergußmasse eingebettet ist, dadurch gekennzeichnet, daß zumindest der Festwiderstand und das Potentiometer, die je eine Widerstandsschicht enthalten, auf einem gemeinsamen Substrat angeordnet sind, daß die Widerstandsschichten des Festwiderstandes und des Potentiometers miteinander einstückig verbunden sind und aus demselben Material bestehen, daß mit der Widerstandsschicht des Festwiderstandes ein Anschlußelement für die Fokussierspannung, das zweite aber mit einem Anschluß des Potentiometers elektrisch leitend verbunden ist und daß das Potentiometer aus der Vergußmasse herausragt. DBP.-Anm. H 04 n, 3/18. AS 2814010

Bekanntgemacht am 30.8.1979

Anmelder: Siemens AG, 1000 Berlin und 8000 München

Erfinder: Dipl.-Ing. Dr. Karl-Ulrich Stein; Dipl-Phys. Reinhard Behn, 8000 MünVerfahren zur Verdichtung binärer Bilddaten. Patentanspruch: Verfahren zur Verdichtung von durch zeilenweise Abtastung einer Vorlage gewonnen, binären Bilddaten für die anschließende Übertragung, bei welchem anhand der Datenwerte vorangehender Bildelemente jeweils ein Datenwerk für laufende Bildelemente geschätzt, mit deren wirklichen Datenwerten verglichen und die Vergleichsergebnisse in Form binärer Fehlerdaten unter Anwendung einer Lauflängencodierung verarbeitet werden, dadurch gekennzeichnet, daß jeweils mehrere aufeinanderfolgende Abtastzeilen zu einer Gruppe zusammengefaßt werden, daß die Bilddaten der ersten Abtastzeile jeder Gruppe als Schätzreferenzdaten unmittelbar einer Lauflängencodierung unterzogen werden, daß die nur für die anschließenden Zeilen einer Gruppe erzeugten Fehlerdaten in jeder Gruppe gemeinsam spaltenweise als Fehlerdaten-Kombinationen in jeweils einen Moduscode umgesetzt werden, und daß als Moduscode für diejenige Fehlerdaten-Kombination mit der größten Eintrittswahrscheinlichkeit ein Lauflängencode verwendet wird.

DBP.-Anm. H 04 n, 1/00, AS 2558264 Bekanntgemacht am 30.8.1979 Anmelder: Olympus Optical Co., Ltd.,

Erfinder: Masaharu Sakamoto; Mashiro Aoki, Tokio

Zeilensequentielles Farbfernsehübertragunssystem. Patentanspruch: Zeilensequentielles Farbfernsehübertragungssystem, bei welchem abwechselnd während einer Zeilenzeit das gesamte Leuchtdichtesignal und während einer darauffolgenden Zeilenzeit das Farbartsignal von einem Farbsignalerzeuger auf einen Farbsignalempfäger übertragen werden, dadurch gekennzeichnet, daß während der genannten darauffolgenden Zeilenzeit der niederfrequente Anteil des Leuchtdichtesignals und in einem Frequenzgebiet oberhalb des genannten niederfrequenten Anteils des Leuchtdichtesignals das Farbartsignal übertragen wird, welches in an sich bekannter Weise in Winkel- und Amplitudenmodula-Bezugsfarbträger auftion einem moduliertist.

DBP.-Anm. H 04 n, 9/34. AS 2237317 Bekanntgemacht am 30.8.1979

Anmelder: N.V. Philips' Gloeilampenfabrieken, Eindhoven (Niederlande) Erfinder: Leonardus A.J. Verhoeven, Eindhoven (Niederlande)

Bildwiedergabeanordnung mit einem Zeilenphasendiskriminator zum Erzeugen einer Regelspannung, Patentanspruch: Bildwiedergabeanordnung, in der Horizontal-Synchron-, Vertikal-Synchron- und Ausgleichsimpulse sowie Vertikal-Austastimpulse verarbeitet werden, mit einem Zeilenphasendiskriminator, der an einer Ausgangsklemme eine Spannung zum Nachregeln des Oszillators liefert, und mit einem Vertikal-Kippgenerator, dadurch gekennzeichnet, daß an einem Integrator der Mittelwert der Regelspannung gebildet wird, der über einen, infolge von Steuerimpulsen sich vertikalfrequent schließenden, zwischen den Ausgangsklemmen des Integrators und des Diskriminators liegenden Schalterübertragen wird.

DBP.-Anm. H 04 n, 5/04. AS 2158250 Bekanntgemacht am 30.8.1979 Anmelder: N.V. Philips' Gloeilampenfabrieken, Eindhoven (Niederlande) Erfinder: Wilhelm Hendrik Amsen; Paulus J.M. Hovens, Eindhoven (Niederlande)

Plattenspieler mit Plattendrehteller neben dem ein Plattenmagazin für abzuspielende Platten vorgesehen ist. Patentanspruch: Plattenspieler mit einer Vorrichtung zum Auswechseln von Schallplatten nach einem Abspielvorgang, mit einem Plattenteller, neben dem ein Magazin zum Aufstapeln von abzuspielenden Schallplatten sowie eine Öffnung zur Entnahme abgespielter Schallplatten vorgesehen ist, mit einer die Tonrille auf der Schallplatte abtastenden Tonabnehmernadel und mit einem hin- und herbewegbaren Hebel, bei dessen Hinbewegung jeweils eine Schallplatte in einer durch das Aufstapeln vorgegebenen Reihenfolge dem Magazin entnommen und auf den Plattenteller überführt wird, dadurch gekennzeichnet, daß die Platte in der Ebene des Magazinbodens auf den Plattenteller überführt wird, daß der Hebel bei seiner Hinbewegung eine Stange gegen die Kraft einer Feder verstellt, daß an einem Ende der Stange eine keilartige Schräge vorgesehen ist, auf welcher ein mit der Tonabnehmernadel verbundenes Gleitstück bei einer Verstellung der Stange hochgleitet und daß beim Hochgleiten des Gleitstücks die Tonabnehmernadel aus der Tonrille gehoben wird.

DBP.-Anm. G 11 b, 17/10. AS 2205036 Bekanntgemacht am 23.8.1979 Anmelder: Yugen-kaisha Watanabe Kenkyusho, Kawasaki, Kanagawa (Ja-

Erfinder: Antrag auf Nichtnennung

Verfahren zum Aufzeichnen eines zusammengesetzten Farbfernsehsignals und/oder Verfahren zur Wiedergabe sowie Vorrichtung zur Aufzeichnung und Vorrichtung zur Wiedergabe. Patentanspruch: Verfahren zum Aufzeichnen eines zusammengesetzten Farbfernsehsignals, das aus einem Helligkeitssignal und einem modulierten Buntsignal besteht, dessen Frequenzband innerhalb desjenigen des Helligkeitssignals liegt, bei dem zum Aufzeichnen das Helligkeitssignal von dem Buntsignal separiert und dann frequenzmoduliert wird, bei dem das frequenzmodulierte Helligkeitssignal dann von seinen niederfrequenten Komponenten befreit und als Teil eines kombinierten Signals aufgezeichnet wird, und/oder Verfahren zur Wiedergabe eines nach dem zuvor angegebenen Verfahren aufgezeichneten Farbfernsehsignals, bei dem das aufgezeichnete kombinierte Signal reproduziert wird, bei dem dann das frequenzmodulierte Helligkeitssignal aus dem kombinierten Signal separiert und frequenzrückmoduliert wird, bei dem das Buntsignal dann aus dem kombinierten Signal zurückgewonnen wird. und bei dem das Buntsignal und das frequenzmodulierte Helligkeitssignal schließlich wieder zu dem Farbfernsehsignal zusammengesetzt werden, dadurch gekennzeichnet, daß zum Aufzeichnen das Buntsignal in denjenigen niederfrequenten Frequenzbereich umgesetzt wird, der sonst von den niederfrequenten Komponenten des frequenzmodulierten Helligkeitssignals eingenommen wird, daß das frequenzmodulierte Helligkeitssignal und das frequenzumgesetzte Buntsignal als kombiniertes Signal aufgezeichnet werden, und daß zur Wiedergabe das frequenzumgesetzte Buntsignal aus dem kombinierten Signal separiert und frequenzumgesetzt wird.

DBP.-Anm. H 04 n, 5/79. AS 1808439 Bekanntgemacht am 6.9.1979 Anmelder: Sony Corp., Tokio Erfinder: Toshihiko Numakura. Tokio

Magnetbandaufzeichnungs- und Wiedergabevorrichtung für Videosignale. Patentanspruch: Magnetbandaufzeichnungs- und Wiedergabevorrichtung für Videosignale von aus zwei Halbbildern aufgebauten Fernsehbildern mit einem Bandantrieb, einer Bandführung mit einer Führungstrommel, die vom Magnetband umspannt wird, und mit n, (n >> 2) rotierenden Magnetköpfen, die schräg zu den Bandkanten verlaufende Spuren beschreiben, derart, daß nur jedes n-te Halbbild aufgezeichnet und bei der Wiedergabe jedes aufgezeichnete Halbbild n-mal abgetastet wird, wobei die Bandgeschwindigkeit, die Rotationsgeschwindigkeit der Magnetköpfe und ihre Anzahl derart gewählt sind, daß sich die auf dem Magnetband aufgezeichneten Halbbilder zeitlich aneinander anschließen und sich im Wiedergabebetrieb ein normgerechtes Fernsehbild ergibt, dadurch gekenn-

Anzeigenschluß für FUNK-TECHNIK
Heft Nr. 2/80 ist am 8. 1. 80

zeichnet, daß die Führungstrommel über etwa 360 */n ihres Umfangs vom Magnetband umspannt wird und daß die n Magnetköpfe um (360 °/n) ± K ° winkelversetzt und axial im Abstand M voneinander versetzt angeordnet sind, wobei K und M unter Berücksichtigung der Drehgeschwindigkeit der Trommel, der Rotationsgeschwindigkeit der Köpfe und der Bandgeschwindigkeit so gewählt sind, daß eine Schrägspur auf dem Band einem Halbbild entspricht. DBP.-Anm. H 04 n, 5/78. AS 1474487 Bekanntgemacht am 30.8.1979 Anmelder, Sony Corp., Tokio Erfinder: Nobutoshi Kihara, Tokio

Magnetbandwiedergabegerät. tentanspruch: Magnetbandwiedergabegerät mit einer Regelschaltung zur Ein-bzw. Nachstellung des Kopfrades relativ zu den Schrägspuren des Magnetbandes, bestehend aus einem ersten Bezugssignalgenerator zur Erzeugung eines ersten Bezugssignals in Abhängigkeit von der Drehlage des Kopfrades, einem zweiten Bezugssignalgenerator zur Erzeugung eines zweiten Bezugssignals in Abhängigkeit von der Lage der Aufzeichnungsspuren, einem Phasenkomparator zur Erzeugung eines Fehlersignals in Abhängigkeit von dem ersten und zweiten Bezugssignal, und einer Steuereinrichtung zur Einstellung der relativen Lage des Bandes und des Kopfrades in Abhängigkeit von dem Fehlersignal, dadurch gekennzeichnet, daß der zweite Bezugssignalgenerator einen Hüllkurvengleichrichter zur Gleichrichtung der von den Magnetköpfen des Kopfrades wiedergegenen Signale aufweist. DBP.-Anm. G 11 b, 5/008. AS 1774833 Bekanntgemacht am 23.8.1979 Anmelder: Sony Corp., Tokio Erfinder: Kiyoshi Yamakawa, Tokio

Schaltungsanordnung zum Erkennen und gaf. Unterdrücken von Cross-Colour-Störungen in Farbfernsehsignalen. Patentanspruch: Schaltungsanordnung zum Erkennen und ggf. Unterdrücken von Übersprechstörungen des Leuchtdichte-(Helligkeits)-Kanals in dem Farbkanal einer Farbfernsehsignalübertragungseinrichtung, besondere Coder einer Farbfernsehsignalquelle, mit einem im Leuchtdichtekanal befindlichen Laufzeitglied und einem Filter, das mittels eines Steuersignals in den Leuchtdichtekanal einschaltbar ist, gekennzeichnet durch eine mit dem Leuchtdichtesignal gespeiste Kettenschaltung aus einem auf den Farbträger abgestimmten Bandpaß, einem auf die Breite eines Bildelementes der Störquelle angepaßten Integrator und einer ein Fernsehhalbbild speichernden Laufzeitkette, deren Laufzeitglieder jeweils zur Speicherung einer Fernsehzeile vorgesehen sind und über ein Logikglied derart miteinander logisch verknüpft sind, daß das Logikglied nur dann durchschaltet, wenn über n aufeinanderfolgende Zeilen des Leuchtdichtesignals farbträgerfrequente Luminanzanteile vorhanden sind, wobei das Ausgangssignal des Logikglieds in dessen durchgeschaltetem Zustand das Steuersignal darstellt, das ggf. einen Umschalter zum Einschalten des Filters anstelle des ansonsten wirksamen Laufzeitgliedes in den Leuchtdichtekanal steuert.

DBP.-Anm. H 04 n, 9/12. AS 2821183 Bekanntgemachtam 23.8.1979 Anmelder: Institut für Rundfunktechnik GmbH, 8000 München Erfinder: Dipl.-Ing. Albert Kaufmann, 8000 München

Pal-Farbfernsehempfängerschaltung mit elektronischer Mitteilung, Patentanspruch: Pal-Farbfernsehempfängerschaltung, in der innerhalb des Farbkanals jeweils ein Farbsignal bestimmter Bandbreite mit dem ihm entsprechenden, um Zeilendauer verzögerten Farbsignal videofrequent oder farbträgerfrequent zur Mittelwertbildung addiert wird, dadurch gekennzeichnet, daß die Addition der Farbsignale nur im unteren Frequenzbereich (0-100 kHz) der Bandbreite erfolgt und daß das Farbsignal im oberen Frequenzbereich (100-500 kHz) der Bandbreite den Farbkanal ohne Mittelwertbildung durchläuft.

DBP.-Anm. H 04 n, 9/39. AS 2140564 Bekanntgemacht am 23.8.1979 Anmelder: Licentia Patent-Verwaltungs-GmbH, 6000 Frankfurt Erfinder: Prof. Dr.-Ing. Walter Bruch, 3000 Hannover

Empfangskonverter, insbesondere für den 12-GHz-Fernsehrundfunk. Patentanspruch: Empfangskonverter, insbesondere für die Umsetzung eines 12-GHz-Fernsehsignals in den VHF/UHF-Bereich, mit einem über eine Regelschleife frequenzstabilisierten Mikrowellenoszillator, dessen Regelspannung aus einem im Zwischenfrequenzbereich vorgenommenen Phasenvergleich zwischen einer diskreten Frequenz des umgesetzten Fernseh-

signals und einer durch einen lokalen freischwingenden Oszillator erzeugten Bezugsfrequenz abgeleitet ist, dadurch gekennzeichnet, daß als diskrete Frequenz der Bildträger des umgesetzten Fernsehkanals verwendet ist, daß die Umsetzung des Bildträgers aus dem VHF/UHF-Bereich in den Zwischenfrequenzbereich über die abstimmbare Oszillatorfreguenz eines handelsüblichen Allbereichstuners erfolgt und daß der Mikrowellenoszillator nach jedem Einschalten oder jeder Wiederkehr des Bildträgers nach Bildausfall durch eine seiner Betriebsspannung überlagerte Wobbelspannung in seiner Frequenz verändert wird, bis in einem Auswerter sowohl der in je einem besonderen Bandpaß herausgesiebte Bildträger als auch der zugehörige Tonträger gleichzeitig ein UND-Tor ansteuern und damit den Wobbelvorgang abschalten.

DBP.-Anm. H 04 n, 5/44. AS 2306656 Bekanntgemacht am 23.8.1979

Anmelder: Allgemeine Electricitäts-Gesellschaft AEG-Telefunken, Berlin und Frankfurt

Erfinder: Dieter Dzenus, 1000 Berlin

Magnetkopfsystem mit einem an einem Schwebeschuh angeordneten Magnetkopf. Patentanspruch: Magnetkopfsystem mit einem Magnetkopf, der im Betrieb auf einer Luft- oder Flüssigkeitsschicht schwebt, die von der Oberfläche eines schnell rotierenden magnetischen Aufzeichnungsträgers mitgedreht wird, wobei das Magnetkopfsystem einen mit den erforderlichen Freiheitsgraden federnd aufgehängten, eine Schwebefläche aufweisenden Schwebeschuh, der den Magnetkopf trägt, und ein Vorspannungselement enthält, dadurch gekennzeichnet, daß ein verformbarer, mit elektrisch steuerbaren Mitteln versehener Schwebeschuh zur reproduzierbaren Veränderung des Krümmungsradius der Schwebefläche in einer Weise vorgesehen ist, daß die Schwebefläche unter Beibehaltung ihrer zum Aufzeichnungsträger gerichteten Krümmung Schweben des Magnetkopfes über dem Aufzeichnungsträger in einer ersten Höhe einen ersten Krümmungsradius und in einer zweiten geringeren Höhe einen zweiten Krümmungsradius einnehmen kann, der größer ist als der erste Krümmungsradius.

DBP.-Anm. G 11 b, 5/60. AS 2 141 738 Bekanntgemacht am 5.7. 1979

Anmelder: N.V. Philips' Gloeilampenfabrieken, Eindhoven

Erfinder: Anthonie Walraven, Emmasingel, Eindhoven (Niederlande)

Einrichtung zum Steuern des Bandzuges. Patentanspruch: Einrichtung zum Steuern des Bandzuges für ein System, in dem zwei von einer Netzwechselspannung gespeiste Elektromotoren vor bzw. nach einer Bandantriebsrolle eine Abwikkelspule und eine Aufwickelspule für ein zur magnetischen Signalaufzeichnung dienendes Band antreiben, mit einer Tachometeranordnung zur Erzeugung von der Drehzahl der Abwickelspule bzw. der Aufwickelspule entsprechenden Impulssignalen, aus denen unter Berücksichtigung der Bandgeschwindigkeit ein dem Bandwickeldurchmesser entsprechendes analoges Signal gebildet wird, dadurch gekennzeichnet, daß jeder Elektromotor durch Phasenanschnitt der Netzwechselspannung in Abhängigkeit von einem Amplitudenvergleich des dem jeweiligen Bandwickeldurchmesser entsprechenden analogen Signals mit einem periodischen Rampensignal steuerbar ist, dessen Rampenbeginn mit der Netzwechselspannungsamplitude änderbar

DBP.-Anm. G 11 b, 15/43. AS 2 511 263 Bekanntgemacht am 12.7. 1979 Anmelder: RCA Corp., New York. N.Y. Erfinder: Arthur Marvin Goldschmidt, Moorestown, N.J.

System zur Drehzahlsteuerung des Kapstan-Motors eines Magnetbandgerätes. Patentanspruch: System zur Drehzahlsteuerung des Kapstanmotors eines Magnetbandgeräts in beiden Drehrichtungen, insbesondere beim Umspulen, wobei ein Signal, das von einem dem Kapstan zugeordneten Tachogenerator abgenommen wird (Istwert) und eine Steuerspannung (Sollwert) über je einen Widerstand dem Eingang eines als Integrator geschalteten Operationsverstärkers zugeführt ist und der Ausgang des Operationsverstärkers über einen Leistungsverstärker mit dem Kapstanmotor verbunden ist, dadurch gekennzeichnet, daß der Tachogenerator über zwei Ausgänge verfügt, an denen zwei Rechteckwellen abnehmbar sind, deren Frequenz jeweils proportional zur Drehzahl und deren Phasen etwa um ein Viertel der Periodendauer gegeneinander verschoben ist, daß eine dieser Rechteckwellen einem Impulsformer zugeführt ist, der Impulse mit einer von der Frequenz unabhängigen Impulsbreite erzeugt, daß die eine Rechteckwelle einem statischen Eingang einer bistabilen Schaltung und die andere Rechteckwelle dem dazugehörigen dynamischen Eingang zur Feststellung der Reihenfolge des Eintreffens der Impulse zugeführt sind und daß die Ausgangssignale des Impulsformers mit einer vom Ausgangssignal der bistabilen Schaltung abhängigen Polarität dem Integrator zugeführt sind.

DBP.-Anm. G 11 b, 15/54. AS 2 124 921 Bekanntgemacht am 12.7. 1979

Anmelder: Robert Bosch GmbH, 7000 Stuttgart

Erfinder: Richard Heinz, 6102 Pfungstadt

Fernsehbildwiedergabeanordnung mit einer Strahlstromklemmregelschaltung. Patentanspruch: Fernsehbildwiedergabeanordnung mit einer Strahlstromklemmregelschaltung mit einer mit einer Bildwiedergaberöhre gekoppelten, von einem Impulsgenerator betätigbaren Strahlstrommeßschaltung, dm während mindestens eines Teils einer Zeilen-Hinlaufzeit einer Vertikal-Austastzeit einen zu korrigierenden Strahlstrombezugspegel zu messen, mit einer Pegeleinbringschaltung, um während der Meßzeit den Bezugspegel in ein der Bildwiedergaberöhre zuzuführendes Videosignal einzuführen und mit einer mit einem Ausgang der Meßschaltung und mit einer Steuerelektrode der Bildwiedergaberöhre gekoppelten Pegelkorrekturschaltung, wobei die Meßschaltung eine Schwellenschaltung und eine Speicherschaltung enthält, dadurch gekennzeichnet, daß mit einer ggf. weiteren Schwellenschaltung bei Auftreten eines (viel) zu großen Strahlstromes ein Betätigungssignal gebildet wird, das auf einen Betätigungseingang einer die Umladezeit der Speicherschaltung umschaltenden Schaltungsanordnung derart gekoppelt ist, daß die Zeit, während der die Speicherschaltung je Vertikalablenk-Periode mit dem auf einen Maximalwert begrenzten Strom umgeladen wird, verlängert wird, so daß der Strahlstrom entsprechend schnell zurückgeregelt wird.
DBP.-Anm. H 04 n, 3/20. AS 2 403 267
Bekanntgemacht am 5.7. 1979
Anmelder: N.V. Philips' Gloeilampenfabrieken, Eindhoven

Erfinder: Willem H. Amsen; Paulus J.M. Hovens, Eindhoven (Niederlande)

Endlosbandcassette. Patentanspruch: Endlosbandcassette mit einem Gehäuse. einer in dem Gehäuse gelagerten Spule, auf die das Endlosband aufgewickelt ist, einer in dem Gehäuse im Abstand von der Spule drehbar gelagerten und mit einer Spulenwelle eines Cassetten-Tonbandgerätes in Antriebseingriff bringbaren Nabe, um die das Endlosband herumgeführt ist, und mit einem mit der Nabe zusammenwirkenden, mit dem Endlosband in Reibkontakt stehenden Andrückorgan, das im Gehäuse drehbar gelagert ist, insbesondere nach Patent 1572 504.9, dadurch gekennzeichnet, daß Nabe und Andrückorgan gemeinsam auf einem im Gehäuse schwenkbar gelagerten Tragteil angeordnet sind.

DBP.-Anm. G 11 b, 23/06. AS 1 936 710 – Zusatz zu 1 572 504

Bekanntgemacht am 12.7. 1979 Anmelder: Sony Corp., Tokio

Erfinder: Hanjiro Esashi, Sendai, Miyagi (Japan)

Zeilenablenkschaltung für einen Fernsehempfänger. Patentanspruch: Zeilenablenkschaltung für einen Fernsehempfänger mit einem Endstufentransehempfänger einem Endstufentransehempfänger einem Endstufentransehempfä

sehempfänger mit einem Endstufentransistor, mit einem mit der Zeilenfrequenz arbeitenden Schaltnetzteil, welches ei-

Wir fertigen u. liefern preiswert elektrisch leitende Beutel für den Transport von MOS-bestückten Bausteinen (Moduln).

Für nebenstehenden Artikel Vertretung zu vergeben.

Lieferant:

KNEISSL J., Kunststoffe — Veredelung Schreiberstorberg 5, 8506 Langenzenn, Tel. (0 91 01) 631 nen Trenntransformator aufweist, in dessen Primärwicklung zur Amplitudenstabilisierung der Ausgangsgleichspannungen die Dauer des Stromflusses durch eine Regelschaltung geändert wird und bei dem der Basis des Endstufentransistors von einer Sekundärwicklung des Trenntransformators über eine in Reihe liegende, zusätzliche Induktivität zum Abschalten eine Schaltspannung zugeführt ist, die einen ersten Anteil erster Polarität zum Durchschalten und einen zweiten Anteil entgegengesetzter Polarität mit sich entsprechend der Änderung der Stromflußdauer ändemden Amplitude aufweist, und bei der weiterhin gegebenenfalls der Basis-Emitter-Strecke des Endstufentransistors eine Diode entgegengesetzter Polarität parallelgeschaltet ist, dadurch gekennzeichnet, daß zur Verringerung der Abhängigkeit des Abschaltverhaltens von der Amplitude des zweiten Anteils der Schaltspannung das der Basis des Endstufentransistors abgewandte Ende der zusätzlichen Induktivität über eine für den zweiten Spannungsanteil durchlässig gepolte Diode geerdet ist.

DBP.-Anm. H 04 n, 3/16. AS 2 816 215 Bekanntgemacht am 5.7. 1979

Anmelder: Licentia Patent-Verwaltungs-GmbH, 6000 Frankfurt

Erfinder: Ing. (grad.) Otto Daute, 6740 Landau

Entmagnetisierungsvorrichtung den Tonkopf eines Cassettentonbandgerätes. Patentanspruch: Entmagnetisierungsvorrichtung für den Tonkopf eines Cassettentonbandgerätes, bestehend aus einem Gehäuse von einer den Tonbandcassetten gleichen Gestalt mit entsprechenden Durchbrüchen für die vorstehenden bzw. vorschiebbaren Teile des Cassettentonbandgerätes, wie Wikkeldorne, Tonwelle und Tonkopf, und einer im Gehäuse durch eine Feder abgestützten, um den Tonkopf ein magnetisches Wechselfeld mit von einer Anfangsintensität aus kontinuierlich abnehmenden Intensität erzeugenden Einrichtung, dadurch gekennzeichnet, daß die das magnetische Wechselfeld erzeugende Einrichtung ein Elektromagnet ist, der von einem in dem Gehäuse angeordneten, eine Wechselspannung erzeugenden Generator erregt wird, welcher eine Einrichtung zur kontinuierlichen Abnahme seiner Ausgangsleistung von einer Anfangsgröße beim Einschalten des Generators aufweist, und daß der Generator von einem Schalter eingeschaltet wird, der gegenüber der den Elektromagneten abstützenden Feder derart im

Gehäuse angeordnet ist, daß er beim Einschieben des Tonkopfes in den zugehörigen Gehäusedurchbruch gegen den Elektromagneten in den Einschaltzustand versetzt wird.

DBP.-Anm. G 11 b, 5/46. AS 2 733 043 Bekanntgemacht am 28.6. 1979

Anmelder: TDK Electronics Co. Ltd., To-kio

Erfinder: Keiichi Yoshizawa, Chiba; Isamu Nakao, Machida, Tokio

Verfahren zum Erzeugen eines einem Videosignal entsprechenden Bildes auf einer Bildebene und Vorrichtung zur Durchführung des Verfahrens. Patentanspruch: Verfahren zum Erzeugen eines einem Videosignal entsprechenden Bildes auf einer Bildebene, bei welchem in einem die Bildebene bildenden elasto-optischen Material wenigstens eine in einer Abtastrichtung fortschreitende Verformungswelle erzeugt wird und bei welchem die Bildebene beleuchtet wird, wobei der Lichtfluß durch die Verformung des elasto-optischen Materials beeinflußt wird, dadurch gekennzeichnet, daß in dem elasto-optischen Material nur in einer der beiden Abtastraster-Richtungen eine fortschreitende Verformungswelle erzeugt wird und in der anderen Richtung in der gesamten entsprechenden Rastdimension wirkende, parallel angeordnete Lichtemittoren wirken, die mit dem Videosignal beaufschlagt werden.

DBP.-Anm. H 04 n, 3/10. AS 2 612 088 Bekanntgemacht am 5.7. 1979 Anmelder, zugleich Erfinder: Ronald S. Smith, 8901 Stettenhofen

Magnetbandtransportvorrichtung, Patentanspruch: Magnetbandtransportvorrichtung zum Vorbeiführen eines Magnetbandes zwischen einer Vorratsspule und einer Aufwickelspule an einem Leseoder Schreibkopf mit im wesentlichen konstanter Lineargeschwindigkeit, mit einer steuerbaren Antriebseinrichtung, welche in Abhängigkeit von einem Steuersignal eine der Spulen antreibt, und mit einer Steuereinrichtung, die ein Steuersignal, das umgekehrt proportional zum Durchmesser des Bandes auf der Aufwickelspule ist, an die Antriebseinrichtung gibt, gekennzeichnet durch eine Signalerzeugungsvorrichtung zum Erzeugen von jeweils einem bestimmten Drehwinkel der Aufwickelspule entsprechenden Impulsen, durch eine Zählvorrichtung, die diese Impulse zählt und entsprechend dem Zählwert ein digitales Ausgangssignal abgibt, welches für die Anzahl von Bandlagen auf der Aufwickelspule repräsentativ ist, durch einen Digital-Analog-Wandler zum Umwandeln des digitalen Ausgangssignals in ein Analogsignal, durch einen an den Digital-Analog-Wandler angeschlossenen Funktionsgenerator zur Bildung eines mit ansteigender Eingangsspannung nichtlinear ansteigenden Ausgangssignals, durch einen darauffolgenden Inverter, der das zum Wickeldurchmesser der Aufwickelspule umgekehrt proportionale Steuersignal abgibt, das einer Drehzahlregelschaltung der Antriebseinrichtung zur Bildung der Drehzahlsollgröße zugeführt wird.

DBP.-Anm. G 11 b, 15/54. AS 2 133 663 Bekanntgemacht am 28.6. 1979

Anmelder: Burroughs Corp., Detroit, Mich.

Erfinder: Ladislao Ch. Csengery, Los Angeles, Calif.

Magnetbandcassette. Patentanspruch: Magnetbandcassette, insbesondere in Miniaturbauweise, in deren Gehäuse eine Abwickel- und eine Aufwickelnabe, die das Magnetband aufnehmen, drehbar gelagert sind und in wenigstens einer deren Flachseiten zur Lagebestimmung und zur Aufnahme von Tonwellen dienende Öffnungen vorgesehen sind, dadurch gekennzeichnet, daß wenigstens eine der Öffnungen als kombinierte Lagebestimmungs- und Tonwellenöffnung ausgebildet und schlüssellochförmig gestaltet ist, sich in an sich bekannter Weise zur vorderen Stirnfläche hin erstreckt und an der vorderen Stirnfläche zugewandten Ende das kreisförmig derart erweiterte Ende hat, daß eine zweite Tonwelle eines Cassettentonbandgeräts aufnehmbar ist, während das rückwärtige Ende derart rechteckig ausgebildet ist, daß ein Lagebestimmungsvorsprung eines Lagerteils der zweiten Tonwelle eingreifen kann. DBP.-Anm. G 11 b, 23/08. AS 2 636 169

Bekanntgemacht am 28.6. 1979 Anmelder: Olympus Optical Co., Ltd., Tokin

Erfinder: Shoichi Saito, Tokio

Einrichtung in einem Magnetbandgerät zur Kupplung eines Antriebsrades mit den Wickeltellern. Patentanspruch: Einrichtung in einem Magnetbandgerät zur Kupplung eines Antriebsrades mit den Wickeltellern mit einem zwischen den Wickeltellern angeordneten Kuppelungsradträger, der schwenkbar gelagert und im wesentlichen auf der Linie der Lagerung und des Kupplungsrades in einem durch einen Anschlag begrenzten Bereich verschiebbar geführt ist, und mit einer Feder, die den Kupplungsradträger

an den Anschlag bewegt, und mit Mitteln zum Schwenken des Kupplungsradträgers zwecks Kupplung des Antriebsrades mit dem einen Wickelteller und mit Mitteln zum Verschieben des Kupplungsradträgers zwecks Kupplung des Antriebsrades mit dem anderen Wickelteller, wobei die das Verschieben des Kupplungsradträgers bewirkenden Mittel an diesem in der Nähe der Längsführung und entgegen der Kraft der Feder angreifen, dadurch gekennzeichnet, daß bei durch die zueinander parallele Anordnung der Bedienungstasten bedingter gleicher Wirkungsrichtung der das Verschieben und Schwenken des Kupplungsträgers bewirkenden Mittel die das Schwenken des Kupplungsradträgers bewirkenden Mittel an diesem an einem so weit von der Lagerung entfernten Punkt angreifen, daß der Kupplungsradträger nach Art eines Hebels schwenkbar ist, und daß die Zugkraft und die Zugrichtung der Feder so gewählt sind, daß sie eine bei der Schwenkung des Kupplungsradträgers auftretende, in Verschiebungsrichtung wirkende Kraftkomponente kompensie-

DBP.-Anm. G 11 b, 15/44. AS 2 624 845 Bekanntgemacht am 28.6.1979

Anmelder: Licentia Patent-Verwaltungs-GmbH, 6000 Frankfurt

Erfinder: Ing. (grad.) Richard Berger, 3050 Wunstorf; Karl Behrens, 3001 Berenbostel

Abtaster zum mechanischen Abtasten einer Bildplatte. Patentanspruch: Abtaster zum mechanischen Abtasten einer Bildplatte, auf der das Signal in Form reliefartiger Erhebungen entlang einer Rille gespeichert ist, der mit einem an einem stabförmigen Halter befestigten Druckwandler verbunden ist und der in Rillenrichtung über mehr als eine Wellenlänge des Signals mit der Bildplatte in Berührung ist, wobei sich die Erhebungen unter dem Abtaster elastisch verformen und der eine auflaufende Seite und eine ablaufende Seite aufweist, die mit der Ebene der Bildplatte unterschiedliche Winkel bilden, dadurch gekennzeichnet, daß der Abtaster relativ zur Laufrichtung der Bildplatte so angeordnet ist, daß die Erhebungen an der Seite auflaufen, welche mit der Ebene der Bildplatte den grö-Beren Winkel bildet.

DBP.-Anm. G 11 b, 3/02. AS 2 727 540 Bekanntgemacht am 13.6. 1979 Anmelder: TED Bildplatten AG AEG-Telefunken-Teldec, Zug (Schweiz)

Erfinder: Dr.-Ing. Gerhard Dickopp; Dipl.-Phys. Benno Jahnel, 3000 Hanno-

Elektronik 79

Dr.-Ing. Heinrich Armbrüster Dr. Dipl.-Ing. Gerhard Grünberger Elektromagnetische Wellen

im Hochfrequenzbereich Grundlagen - Ausbreitung - Geräte 1978 - 176 Seiten, 120 Abbildungen und 10 Tabellen, Leinen, DM 56, -. ISBN 3-8101-0036-6

Dr.-Ing. Heinrich Armbrüster Elektromagnetische Wellen im Hochfrequenzbereich

Anwendungen 1975. 192 Seiten mit zahlreichen Abbildungen und Skizzen, Leinen, DM 58,-. (ISBN 3-8009-1210-4, Originalausgabe Siemens. Im Vertrieb des Hüthig & Pflaum Verlages)

Dr.-Ing. Heinrich Armbrüster Elektromagnetische Wellen Ausbreitung im Raum und in Wellenleitern 1973. 108 Seiten und zahlreiche Abbil-

dungen und Skizzen, kartoniert, DM15.-(PU, Doppelband Nr. 50) (ISBN 3-8009-4050-7, Originalausgabe Siemens. Im Vertrieb des Hüthig & Pflaum Verlages)

Winfried Knobloch Eduard Gublass

Service an Farbfernsehempfängern

1978. 2, vollständig neu bearbeitete Auflage, 144 Seiten, 54 Abbildungen, kartoniert DM 34.50 ISBN 3-8101-0034-X

Dipl.-Ing. Dieter Mildenberger Analyse elektronischer Schaltkreise

Grundlagen, Berechnungsverfahren,

Anwendungen I. Band: Stationäres Verhalter 1975. 504 Seiten mit 527 Bilddarstellungen, zahlreichen Formeln, Tabellen und 4 Falttafeln, Ganzleinen, DM 72,-... ISBN 3-8101-0019-6

II. Band: Quasistationäres Verhalten 1976. 480 Seiten mit 275 Abbildungen und 8 Tabellen, Ganzleinen, DM 88,-. ISBN 3-8101-0031-5

Prof. Dr.-Ing. M. Minovic Schaltgeräte

Theorie und Praxis 1977. 336 Seiten mit 193 Abbildungen und 26 Tabellen, Kunststoffeinband, DM 75,-.

ISBN 3-8101-0035-8

Prof. Dipl -Ing. Hans Peschl HF-Leitung als Übertragungsglied und Bautell

1979. 216 Seiten, 132 Abbildungen und zahlreiche Übungsaufgaben, Kunst-stoffeinband, DM 39,80. ISBN 3-8101-0053-6

neu Ing. (grad.) Alfred Porst Bipolare Halbleiter 1979. 240 Seiten mit 131 Abbildungen, Kunststoffeinband, DM 29.80. ISBN 3-8101-0051-X

Curt Rint (Hrsg.) Handbuch für Hochfrequenz- und Elektro-Techniker Das universelle Nachschlagewerk für Studium und Praxis in völlig

neuer Konzeption

1978. 12., ergänzte und völlig neu bearbeitete Auflage. 752 Seiten mit 464 Abbildungen und Tabellen, Kunststoffeinband, DM 54,80. ISBN 3-8101-0042-0

Hüthig & Pflaum

Band 2: 1978. 12., ergänzte und völlig neu bearbeitete Auflage, 771 Seiten, 465 Ab-bildungen und Tabellen, Kunststoff-einband, DM 58,80. ISBN 3-8101-0043-9

Band 3: 1979. 12., ergänzte und völlig neu bearbeitete Auflage. 751 Seiten, 547 Ab-bildungen und zahlreiche Tabellen, Kunststoffeinband, DM 59,80

Band 4: 1979. 10., ergänzte und völlig neu be-arbeitete Auflage. Etwa 780 Seiten, zahlreiche Abbildungen und Tabellen, Kunststoffeinband, ca. DM 60,-. (Erscheint ca. Oktober) ISBN 3-8101-0061-7

1964. 755 Seiten mit 538 Abbildungen und 47 Tabellen, Leinen, DM 30,50. ISBN 3-8101-0007-2

1969. 755 Seiten mit 537 Abbildungen und 48 Tabellen, Leinen, DM 30,50. ISBN 3-8101-0008-0

Beim Studium und in der Praxis vieltausenfach bewährt **Elektrische Nachrichten**technik

Dr.-Ing. Heinrich Schröder Dr.-Ing. Günther Rommel

Band 1a: Eigenschaften und Darstellung von Signalen

1978. 10., völlig neu bearbeitete Auflage. 412 Seiten mit 179 Abbildungen und Tabellen, Kunststoffeinband, DM 59,80.

ISBN 3-8101-0045-5

Dr.-Ing. Heinrich Schröder

Band 2: Röhren und Transistoren mit ihren Anwendungen bei der Verstärkung, Gleichrichtung und Erzeugung von Sinusschwingun-

1976, 603 Seiten, 411 Abbildungen, 14 Tabellen, 48 Rechenbeispiele, 60 Aufgaben, Ganzleinen, DM 56,-.
ISBN 3-8101-0016-1

Dr.-Ing. Heinrich Schröder Dipl.-Ing. Gerhard Feldmann Dr.-Ing. Günther Rommel

Band 3: Grundlagen der Impulstechnik und ihre Anwendung beim Fernsehen

1976. 764 Seiten, 549 Abbildungen, 59 Rechenbeispiele, 22 Aufgaben, Ganz-leinen, DM 56,-. ISBN 3-8101-0017-X

Prof. Dipl.-Ing. Hermann Schunk Dipl.-Ing. Werner Engel

Grundlagen der Impulstechnik 1979. 208 Seiten, 185 Abbildungen und zahlreiche Beispiele, Kunststoffein-ISBN 3-8101-0054-4

Prof. Dipl.-Ing. Horst Schymura

Rauschen in der Nachrichtentechnik

1978. 124 Seiten mit 59 Abbildungen und 30 Übungsaufgaben, broschiert, DM 29.80.

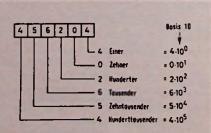
ISBN 3-8101-0050-1

im Buchhandel oder beim Verlag erhältlich.

Ausführliche Informationen durch unser Gesamtverzeichnis. Bitte anfordern.

Hüthig & Pflaum Verlag Lazarettstr. 4, 8000 München 19 Im Welher 10, 6900 Heldelberg 1 FT-Lehrgang für Radio- und Fernsehtechniker

Einführung in die Digitaltechnik


11. Folge: Zahlensysteme und Codes

Immer stärker breitet sich die Digitaltechnik auch in den Geräten der Unterhaltungselektronik aus. Schon bald wird ein Radio- und Fernsehtechniker beruflich keine Chance mehr haben, wenn er diese für ihn jetzt noch verhältnismäßig neue Technik nicht gründlich lernt. Glücklicherweise ist dieses Gebiet jedoch leichter zu lernen, als es anfangs aussieht. Einen einfachen und doch gründlichen Einstieg in die Digitaltechnik bietet diese von Obering. Horst Pelka, München, speziell für Radio- und Fernsehtechniker ausgearbeitete Beitragsfolge.

18. Basiszahl: Schlüssel der Zahlensysteme

Das Dezimalsystem ist ein Zahlensystem mit der Basis 10, das heißt, es verfügt über die 10 Ziffern 0 bis 9. Nehmen wir als Beispiel die Zahl 456204. Beginnt man bei der niedrigsten Stelle, so setzt sich die Zahl aus 4 Einern, 0 Zehnern, 2 Hunderten, 6 Tausendern, 5 Zehntausendern und 4 Hunderttausendern zusammen (Bild 18.1.). Die Einer, Zehner, Hunderter usw. kann man auch als Potenzen der Basis 10 darstellen. Statt 4 Einer schreibt man dann 4 · 10°, statt 0 Zehner 0 · 10¹, statt 2 Hunderter 2 · 10², usw.

Bild 18.1. Aufbau einer 6stelligen Dezimalzahl mit Potenzen der Basis 10

Dualsystem

In der Digitaltechnik werden nur die beiden Dualziffern 0 und 1 verwendet. Es handelt sich also um ein Dualsystem mit der Basis 2, das bereits 1703 von Leibnitz bekanntgemacht wurde. Nehmen wir beispielsweise die achtstellige Dualzahl nach Bild 18.2. an, so teilt sie sich, beginnend bei der niederwertigsten Stelle, folgendermaßen auf:

- 1 Einer,
- 0 Zweier,
- 1 Vierer,
- 0 Achter,
- 1 Sechzehner,
- 1 Zweiunddreißiger,
- 0 Vierundsechsziger,
- Einhundertachtundzwanziger.

Mathematisch gesehen können wir wieder die Einer, Zweier, Vierer usw. als Potenz - nun aber der Basis 2 schreiben. Dann erhält man 1 · 20 + 0 · 21 + 1 · 22, usw. Tabelle 8 zeigt die Stellenwerte der Dualzahlen von 20 bis 216. Rechnet man diese Potenzen aus (Bild 18.2. ganz rechts) und addiert sie, so erhält man die uns geläufige Dezimalzahl, in diesem Falle 181. Beim Vergleich der Bilder 18.1 und 18.2 können wir folgendes feststellen: Obwohl wir es bei der Dezimalzahl nur mit einer sechsstelligen Zahl zu tun haben, gegenüber 8 Stellen bei der Dualzahl, ist der Zahlenwert der Dezimalzahl doch wesentlich größer als der der Dualzahl. Wie wir später bei den Codes noch sehen werden, benötigt man zur Darstellung einer Dezimalziffer vier Dualziffern. Eine solche aus vier Dualziffern bestehende Dezimalziffer nennt man auch eine BCD-Zahl (binär codierte Dezimal-Zahl).

Sedezimalsystem

Selbstverständlich kann jede beliebige Zahl als Basis eines Zahlensystems verwendet werden; gebräuchlich sind neben den genannten aber nur noch die Zahlen 8 und 16. Ein Zahlensystem mit der Basis 8 nennt man Oktal-System, ein System mit der Bais 16 Sedezimalsystem. Letzteres wird auch häufig als Hexadezimalsystem bezeichnet; eine Zahl daraus als Hexzahl (abgekürzt). Das Sedezimalsystem hat große Bedeutung in der Digitaltechnik, weil es aus den vier Stellen des Dualsystems abzuleiten ist (Bild 18.2.). Diese vier Stellen können nämlich die Dezimalziffern 0 bis 15 ausdrücken. In diesem Falle sind die vier Dualziffern besser "ausgenutzt" als beim BCD-

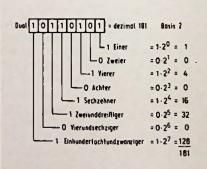


Bild 18.2. Aufbau einer 8stelligen Dualzahl mit Potenzen der Basis 2. Die gleichwertige Dezimalzahl lautet 181

Tabelle 8. Stellenwerte von Dualzahlen mit maximal 17 Stellen

20= 1	$2^9 = 512$
$2^1 = 2$	$2^{10} = 1024$
$2^2 = 4$	$2^{11} = 2048$
$2^3 = 8$	$2^{12} = 4096$
$2^4 = 16$	2^{13} = 8192
$2^5 = 32$	214=16384
$2^6 = 64$	215=32768
$2^7 = 128$	2 ¹⁶ =65536
2 ⁸ =256	

System, bei dem man nur die Ziffern 0 bis 9 codiert, sechs mögliche weitere Ziffern aber ungenutzt läßt. Beim Sedezimalsystem sind deshalb für große Zahlenwerte weniger Stellen notwendig als bei einer gleichwertigen BCD-Zahl.

Da wir in unserem Dezimal-Zahlensystem nur die Ziffern 0 bis 9 kennen. müssen im Sedezimalsystem neue Bezeichnungen für die Ziffern 10 bis 15 verwendet werden; es sind die Buchstaben A bis F. Bild 18.3. zeigt Sedezimalziffern und ihren dezimalen Wert. Von 0 bis 9 sind beide Systeme identisch, das Sedezimalsystem hat dagegen von 10 bis 15 nur die erwähnten einstelligen Bezeichnungen. Sehen wir uns als Beispiel in Bild 18.4, die vierstellige Sedezimalzahl 9ADFH an. Sie entspricht der Dezimalzahl 39647. Um eine Verwechslung mit Dezimalzahlen zu vermeiden, ist es üblich, nach der Sedezimalzahl ein "H" (von hexadezimal) zu schreiben. Außerdem ist im Beispiel eine Verwechslung schon dadurch nicht möglich, weil drei Sedezimalstellen größer als 9 sind, und die dann notwendigen Buchstaben die Zahl eindeutig als Sedezimalzahl kenn-

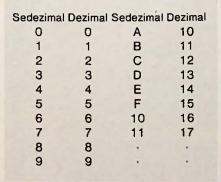


Bild 18.3. Sedezimalziffern und ihr dezimaler Wert

zeichnen. Eine Sedezimalzahl hat als Stellenwerte Einer, Sechzehner, Zweihundertsechsundfünfziger, Viertausendsechsundneunziger usw. Auch die Dualzahlen haben als Stellenwerte Einer und Sechzehner (Bild 18.2.), das Sedezimalsystem ist also verwandt mit dem Dualsystem. Beide lassen sich leicht ineinander umwandeln, da immer vier Dualziffern eine Sedezimalziffer ergeben. Die Stellenwerte einer Sedezi-

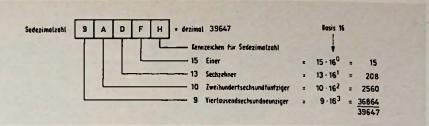


Bild 18.4. Aufbau einer 4stelligen Sedezimalzahl mit Potenzen der Basis 16. Die gleichwertige Dezimalzahl lautet 39647

malzahl können als Potenzen der Basis 16 geschrieben werden, also 16°, 16¹, 16² usw. Jedem Stellenwert sind dann die Ziffern 0 bis F zugeordnet. Tabelle 9 zeigt die vier letzten Stellenwerte einer Sedezimalziffer 16° bis 16⁴.

Die größte vierstellige Sedezimalzahl FFFFH hat den in Dezimalsystem Wert 65535. Die größte vierstellige Dezimalzahl hätte nur den Wert 9999. Wir sehen also, daß im Sedezimalsystem mit nur vier Ziffern bereits über 6mal größere Zahlenwerte möglich sind als im Dezimalsystem.

enthalten in eine Zeile und "füllen wir die Lücken mit Nullen auf", dann ist das Ergebnis die siebzehnstellige Dualzahl 10000101010111101 (Bild 19.1.).

Auf ähnliche Weise, aber mit anderen Potenzen, wird eine Dezimalzahl in eine Sedezimalzahl umgewandelt. In der Dezimalzahl 68285 ist die Potenz 16⁴ = 65536 einmal enthalten. Der Rest ist wieder 2749, in dem die Potenz 16² zehnmal enthalten ist. Wir schreiben aber nicht 10, sondern A·16². Nach erneuter Subtraktion bleibt ein Rest von 189. Darin ist die Potenz 16¹ elfmal enthalten. Wir schreiben hier B·16¹, und

19. Vom einen ins andere Zahlensystem

In den Bildern 18.2. und 18.4. haben wir bereits die Umwandlung einer Dualzahl in eine Dezimalzahl und die Umwandlung einer Sedezimalzahl in eine Dezimalzahl vorgenommen. Dabei wurde folgendermaßen vorgegangen: Wir haben den Stellenwert jeder einzelnen Stelle mit der zugehörigen Ziffer multipliziert und von diesen Ergebnissen die Summe gebildet. Wenn man nun eine Dezimalzahl, zum Beispiel die Zahl 68285 in eine Dualzahl umwandeln will, muß man so verfahren: Aus Tabelle 8 sucht man sich diejenige Potenz heraus, die in der umzuwandelnden Dezimalzahl gerade noch enthalten ist; in diesem Fall ist es 216 = 65536. Dieser Wert wird von der umzuwandelnden Zahl abgezogen. Es bleibt der Rest 2749. In dieser Zahl ist die Dualzahl 211 = 2048 enthalten, Letztere Zahl wird vom Rest abgezogen, worauf man auf die Zahl 701 stößt. Darin ist die Dualzahl 29 = 512 enthalten, die von 701 abzuziehen usw. Wird der Rechengang richtig fortgesetzt, bleibt schließlich ein Rest von 5 übrig, in dem 22=4 enthalten ist. Als Rest bleibt dann eine 1, in der die Potenz 20 = 1 genau aufgeht. Schreiben wir jetzt alle die Stellen, die eine duale 1

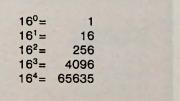
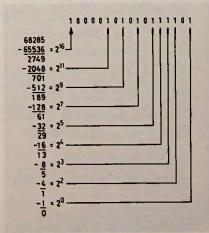



Tabelle 9. Stellenwerte von Sedezimalzahlen mit maximal 5 Stellen

Bild 19.1. Die Dezimalzahl 68285 wird in eine gleichwertige Dualzahl umgewandelt

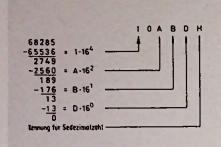


Bild 19.2. Die Dezimalzahl 68285 wird in eine gleichwertige Sedezimalzahl umgewandelt

nach Subtraktion bleibt ein Rest von 13, welcher der Sedezimalzahl D entspricht (Bild 19.2.). In der Spalte mit den Sedezimalstellen sind sämtliche Stellen bis auf die Stelle 163 besetzt. Für eine nichtbesetzte Stelle schreiben wir wieder eine Null. Die Sedezimalzahl ist somit: 10ABDH.

Noch ein Hinweis: Beginnt eine Sedezimalzahl mit einem Buchstaben, so ist es üblich, vor diesem Buchstaben eine Null zu schreiben, um Codierschaltungen anzuzeigen, daß es sich hier um eine Zahl und nicht um eine Buchstabenkombination handelt.

Neue Bauelemente

Stereo-Verstärker-IC. Die Netzwerke für Lautstärke-, Balance- und Klangeinstellung werden von dem Stereo-Verstärker TDA 1098 (Thomson-CSF, München) hochohmig angesteuert, so daß nur eine geringe Abnahme des Signal/Rausch-Verhältnisses gewährleistet ist. Wichtige Daten: $U_b = 8 \text{ V}$ bis 40 V, v = 8 dB $R_{\text{ausg.}} = 100 \Omega$, Brummunterdrückung 70 dB, Rauschspannung (auf den Eingang bezogen) 2 μV.

Spannungsregler für 180 V. Bei Eingangsspannungen zwischen 200 V und 250 V halten die Spannungsregler DI 900 (Ausgangsstrom 20 mA) und DI 905 (Ausgangsstrom 50 mA), die Ausgangsspannung auf 180 V ± 5%. Beide Regler haben ein TO-220-Gehäuse, sind kurzschlußfest, vor thermischer Überlastung geschützt und haben eine rückläufige Strom-Kenn-

CMOS-Phasenkomparator. Im 8poligen Mini-DIP-Gehäuse kommt der Phasenkomparator MM 74 C 932 von National Semiconductor auf den Markt. Die beiden Komparator-Schaltungen des ICs sind als Exclusiv-ODER-Gatter und als flankengesteuertes digitales Speicher-Netzwerk aufgebaut.

OpAmp mit Komparator, Einen intern frequenzkompensierten Operationsverstärker und einen genauen Spannungskomparator enthält der Baustein LM 192 von National Semiconductor. Die elektrisch unabhängigen Schaltungen können an einer Einfach-Versorgungsspannung von 3 V bis 32 V betrieben werden, bei einer konstanten Stromaufnahme von 0,5 mA.

Schalttransistor für 1500 V. Eine Kollektor-Emitter-Sperrspannung von 1500 V verträgt der Leistungstransistor MJE 12007 der Motorola GmbH. Da der Transistor ein TO-220-Kunststoffgehäuse hat, ist dieser Wert ungewöhnlich hoch. Die Schaltzeit wird bei 2 A mit 1 μs angegeben, die Gesamterlustleistung bei 25°C mit 65 W $(U_{CEO} = 750 \text{ V}).$

HF-Buchsen für Printmontage. Von der Firma Kings Electronics Co. (Vertrieb: Alfred Neye Enatechnik GmbH, 2085 Quickborn) gibt es HF-Buchsen des Typs BNC, TNC, SMA und K-Loc für die einfache Printmontage. Gerade oder rechtwinklige Ausführungen können auf Platinen mit 1,6 mm, 3,2 mm oder 6,4 mm Dicke montiert werden

Funk TECHNIK

Fachzeitschrift für die gesamte Unterhaltungselektronik

Erscheinungswelse: Monatlich

Vereinigt mlt "Rundfunk-Fernseh-Großhandel"

Verlag und Herausgeber

Hūthig & Pflaum Verlag GmbH & Co. Fachliteratur KG, München und Heidelberg

Verlagsanschriften: Lazarettstraße 4 8000 München 19 Tel. (089) 18 60 51 Telex 5 29 408 pfivi

Im Weiher 10 6900 Heidelberg 1 Tel. (0 62 21) 489-1 Telex 461 727 huehd

Inhaber- und Beteiligungsverhältnisse

Komplementär: Hūthig & Pflaum Verlag GmbH, München

Hüthig & Pitaum verlag Gmon, multidist Kommanditisten:
Hüthig GmbH & Co. Verlags KG, Heidel-berg (persönlich haftend: Hüthig GmbH, Heidelberg; Kommanditisten: Marlene Hüthig, Verlegerin; Regine Rotzler, Haus-frau; Holger Hüthig, Verleger, alle Heidel-berg; Sibylle Seel, Hausfrau, Ingolstadt); Richard Pilaum Verlag KG, München; Beda Bohinger, Verlegerin, München.

Verlagsleitung Ing. Peter Eiblmayr, München Joachim Rackwitz, Heidelberg

Koordination: Fritz Winzinger Verlagskonten: PschK München 8201-800 Deutsche Bank Heidelberg 01/94 100 (BLZ 672 700 03)

Redaktion

Chefredakteur: Dipl.-Ing. Wolfgang Sandweg (verantwortlich)

Redakteure: Ing. (grad.) Stephan Schall, Margot Sandweg, Curt Rint

Redaktion Funk-Technik Lazarettstraße 4 8000 München 19 Telefon (0 89) 18 60 51 Telex 5 29 408 pfivi

Wirtschaftsredaktion Funk-Technik Redaktionsbüro W. + M. Sandweg Weiherfeld 14 8131 Aufkirchen über Starnberg Telefon (0 81 51) 56 69

Nachdruck ist nur mit Genehmlgung der Redaktion gestattet.

Für unverlangt eingesandte Manuskripte wird keine Gewähr übernommen.

Anzeigen

Anzeigenleiter: Walter Sauerbrey (verantwortlich)

Hüthig & Pflaum Verlag Anzeigenabtellung "Funk-Technik" Postfach 20 19 20 8000 München 2 Telefon (089) 18 60 51 Telex 5 216 075 pfla

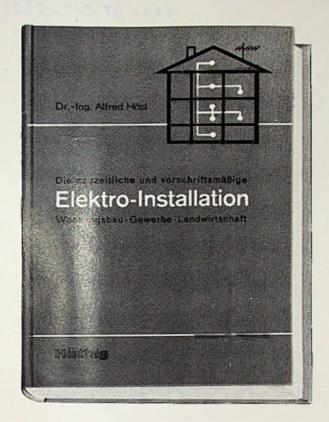
Paketanschrift: Lazarettstraße 4 8000 München 19

Gültige Anzeigenpreisliste Nr. 12 vom 1, 7, 1979

Vertrieb

Vertriebsleiter: Peter Bornscheuer

Hüthig & Pflaum Verlag Vertriebsabteilung Im Welher 10 6900 Heidelberg 1 Telefon (0 62 21) 4 89-1 Telex 4 61 727 huehd


Bezugspreis: Einzelheft DM 7,— ab Verlag inklusive Mehrwertsteuer zuzüglich Porto. Jahresabonnement Inland DM 80,— + DM 12,— Versandspesen. Jahresabonnement Ausland DM 80,— + DM 22,80 Versandspesen.

Kündigungen sind jeweils 2 Monate vor Ende des Bezugsjahres möglich und dem Verlag schriftlich mitzuteilen. Die Abonnementsgelder werden jährlich im voraus in Rechnung gestellt, wobei bei Tellnahme am Lastschriftabbuchungsverfahren über die Postscheckämter und Bankinstitute eine vierteljährliche Abbuchung möglich ist.

Bei unverschuldetem Nichterscheinen keine Nachlieferung oder Erstattung.

Richard Pflaum Verlag KG Lazarettstraße 4 8000 München 19 Telefon (089) 18 60 51 Telex 5 216 075 pfla

Hüthig

Der neue "Hösl" ist da!

Jetzt in völlig überarbeiteter und erweiterter 9. Auflage

Die neuzeitliche und vorschriftsmäßige Elektro-Installation

Wohnungsbau · Gewerbe · Landwirtschaft von Dr.-Ing. Alfred Hösl

9., völlig neubearb, und erw. Aufl. 1979, ca. 480 S., 237 Abb., 65 Tab., Kunststoffeinband, DM 27,80 ISBN 3-7785-0599-8

In der völlig überarbeiteten 9. Auflage, die auch in neuer Satztechnik herauskommt, wurden wieder alle einschlägigen Verordnungen, Normblätter und nationalen sowie internationalen Geräte- und Installations-Bestimmungen, die bis Ende Juli 1979 herausgekommen sind, berücksichtigt. Neu aufgenommen wurden Abschnitte über die Einschubtechnik, Farbwahl von Leuchtmeldern, Lüftungsanlagen, Antriebe und Antriebsgruppen, Gefahrenmeldeanlagen, Intensivbetriebe, Ladestationen, Gaststätten, Holzhäuser, fliegende Bauten, Schutzmaßnahmen für Fernmeldeanlagen. Darüber hinaus wurde das Buch durch zahlreiche neue Bilder und Zeichnungen ergänzt. Auf Anregung vieler Leser wurde das Sachverzeichnis wesentlich erweitert, so daß das rasche Aufsuchen von Detailfragen wesentlich erleichtert wurde. Der neue "Hösl" hat nunmehr eine Auflage von weit über 100 000 Exemplaren erreicht und ist so zu einem der wichtigsten Bücher für die fünf Elektrohandwerke, besonders für die Elektroinstallateure, aber auch für alle Betriebselektriker und Monteure der EVU, geworden.

Dr. Alfred Hüthig Verlag · Postfach 10 28 69 · 6900 Heidelberg 1

Mickan, G. Woltersdorf 1255 125 Goothestr. 11 Kto. 6732-43; HITACHI INNOVATIVE TECHNOLOGY 0 0 DE EELEVST

<u>Hitachi Hit-Hitachi Innovative Technology. Unter diesem Zeichen präsentiert Ihnen ein Unternehmen von Weltgeltung außergewöhnliche Innovationen.</u>

In jeder Hitachi-Innovation steckt das technische Know-how und die Erfahrung, die Ihnen nur ein führender Hersteller bieten kann. Ständig mit an der Spitze, wenn es um marktgerechte Technologien geht, die Sie und Ihre Kunden zufriedenstellen.

Dieser Hitachi-Hit bietet Ihnen eine weitere Möglichkeit, das technische Niveau und die Attraktivität Ihres Angebotes zu erhöhen: D-5500, das "denkende" HiFi-Tapedeck. Mit dem microcomputergesteuerten ATRS (Automatic Tape Response System) wird das Gerät automatisch und präzise auf die jeweilige Bandsorte eingemessen. Memory-Speicher für 3 Bandarten. Mit dem direktangetriebenen Unitorque-Motor werden die Gleichlaufschwankungen auf 0,09% reduziert. Das 3-Kopf-System ermöglicht Hinterbandkontrolle.

Der abnehmbare Steuerblock mit IC-Logikschaltung ist auch als drahtlose Infrarot-Fernbedienung einsetzbar. DOLBY. Frequenz CrO₂ 20–20.000 Hz. Auto-Rewind. UKW-Stereofilter.

THE HITACHI
mehr Spaß an der Technik